383 lines
12 KiB
Python
383 lines
12 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Test deprecated functionality which will be removed in v1.5.0"""
|
|
import os
|
|
from typing import Any, Dict
|
|
from unittest import mock
|
|
|
|
import pytest
|
|
import torch
|
|
from torch import optim
|
|
|
|
from pytorch_lightning import Callback, Trainer
|
|
from pytorch_lightning.callbacks import ModelCheckpoint
|
|
from pytorch_lightning.core.decorators import auto_move_data
|
|
from pytorch_lightning.loggers import WandbLogger
|
|
from pytorch_lightning.profiler import AdvancedProfiler, BaseProfiler, PyTorchProfiler, SimpleProfiler
|
|
from pytorch_lightning.trainer.callback_hook import warning_cache as callback_warning_cache
|
|
from tests.deprecated_api import no_deprecated_call
|
|
from tests.helpers import BoringModel
|
|
from tests.helpers.utils import no_warning_call
|
|
|
|
|
|
def test_v1_5_0_model_checkpoint_save_checkpoint():
|
|
model_ckpt = ModelCheckpoint()
|
|
trainer = Trainer()
|
|
trainer.save_checkpoint = lambda *_, **__: None
|
|
with pytest.deprecated_call(match="ModelCheckpoint.save_checkpoint` signature has changed"):
|
|
model_ckpt.save_checkpoint(trainer, object())
|
|
|
|
|
|
def test_v1_5_0_model_checkpoint_save_function():
|
|
model_ckpt = ModelCheckpoint()
|
|
with pytest.deprecated_call(match="Property `save_function` in `ModelCheckpoint` is deprecated in v1.3"):
|
|
model_ckpt.save_function = lambda *_, **__: None
|
|
with pytest.deprecated_call(match="Property `save_function` in `ModelCheckpoint` is deprecated in v1.3"):
|
|
_ = model_ckpt.save_function
|
|
|
|
|
|
@mock.patch('pytorch_lightning.loggers.wandb.wandb')
|
|
def test_v1_5_0_wandb_unused_sync_step(tmpdir):
|
|
with pytest.deprecated_call(match=r"v1.2.1 and will be removed in v1.5"):
|
|
WandbLogger(sync_step=True)
|
|
|
|
|
|
def test_v1_5_0_old_callback_on_save_checkpoint(tmpdir):
|
|
|
|
class OldSignature(Callback):
|
|
|
|
def on_save_checkpoint(self, trainer, pl_module): # noqa
|
|
...
|
|
|
|
model = BoringModel()
|
|
trainer_kwargs = {
|
|
"default_root_dir": tmpdir,
|
|
"checkpoint_callback": False,
|
|
"max_epochs": 1,
|
|
}
|
|
filepath = tmpdir / "test.ckpt"
|
|
|
|
trainer = Trainer(**trainer_kwargs, callbacks=[OldSignature()])
|
|
trainer.fit(model)
|
|
|
|
with pytest.deprecated_call(match="old signature will be removed in v1.5"):
|
|
trainer.save_checkpoint(filepath)
|
|
|
|
class NewSignature(Callback):
|
|
|
|
def on_save_checkpoint(self, trainer, pl_module, checkpoint):
|
|
...
|
|
|
|
class ValidSignature1(Callback):
|
|
|
|
def on_save_checkpoint(self, trainer, *args):
|
|
...
|
|
|
|
class ValidSignature2(Callback):
|
|
|
|
def on_save_checkpoint(self, *args):
|
|
...
|
|
|
|
trainer.callbacks = [NewSignature(), ValidSignature1(), ValidSignature2()]
|
|
with no_warning_call(DeprecationWarning):
|
|
trainer.save_checkpoint(filepath)
|
|
|
|
|
|
class BaseSignatureOnLoadCheckpoint(Callback):
|
|
|
|
def __init__(self):
|
|
self.on_load_checkpoint_called = False
|
|
|
|
|
|
class OldSignatureOnLoadCheckpoint(BaseSignatureOnLoadCheckpoint):
|
|
|
|
def on_save_checkpoint(self, *args) -> Dict[str, Any]:
|
|
return {"a": 0}
|
|
|
|
def on_load_checkpoint(self, callback_state) -> None:
|
|
assert callback_state == {"a": 0}
|
|
self.on_load_checkpoint_called = True
|
|
|
|
|
|
class NewSignatureOnLoadCheckpoint(BaseSignatureOnLoadCheckpoint):
|
|
|
|
def on_save_checkpoint(self, trainer, pl_module, checkpoint) -> dict:
|
|
return {"something": "something"}
|
|
|
|
def on_load_checkpoint(self, trainer, pl_module, checkpoint):
|
|
assert checkpoint == {"something": "something"}
|
|
self.on_load_checkpoint_called = True
|
|
|
|
|
|
class ValidSignature2OnLoadCheckpoint(BaseSignatureOnLoadCheckpoint):
|
|
|
|
def on_save_checkpoint(self, trainer, pl_module, checkpoint) -> dict:
|
|
return {"something": "something"}
|
|
|
|
def on_load_checkpoint(self, *args):
|
|
assert len(args) == 3
|
|
self.on_load_checkpoint_called = True
|
|
|
|
|
|
def test_v1_5_0_old_callback_on_load_checkpoint(tmpdir):
|
|
|
|
model = BoringModel()
|
|
trainer_kwargs = {
|
|
"default_root_dir": tmpdir,
|
|
"max_steps": 1,
|
|
}
|
|
chk = ModelCheckpoint(save_last=True)
|
|
trainer = Trainer(**trainer_kwargs, callbacks=[OldSignatureOnLoadCheckpoint(), chk])
|
|
trainer.fit(model)
|
|
|
|
with pytest.deprecated_call(match="old signature will be removed in v1.5"):
|
|
trainer_kwargs["max_steps"] = 2
|
|
cb = OldSignatureOnLoadCheckpoint()
|
|
trainer = Trainer(**trainer_kwargs, callbacks=cb, resume_from_checkpoint=chk.last_model_path)
|
|
trainer.fit(model)
|
|
assert cb.on_load_checkpoint_called
|
|
|
|
class ValidSignature1(BaseSignatureOnLoadCheckpoint):
|
|
|
|
def on_load_checkpoint(self, trainer, *args):
|
|
assert len(args) == 2
|
|
self.on_load_checkpoint_called = True
|
|
|
|
model = BoringModel()
|
|
chk = ModelCheckpoint(save_last=True)
|
|
trainer = Trainer(
|
|
**trainer_kwargs,
|
|
callbacks=[
|
|
NewSignatureOnLoadCheckpoint(),
|
|
ValidSignature1(),
|
|
ValidSignature2OnLoadCheckpoint(),
|
|
chk,
|
|
]
|
|
)
|
|
with no_deprecated_call(match="old signature will be removed in v1.5"):
|
|
trainer.fit(model)
|
|
|
|
with pytest.deprecated_call(match="old signature will be removed in v1.5"):
|
|
trainer = Trainer(**trainer_kwargs, resume_from_checkpoint=chk.last_model_path)
|
|
trainer.fit(model)
|
|
|
|
|
|
def test_v1_5_0_legacy_profiler_argument():
|
|
with pytest.deprecated_call(match="renamed to `record_functions` in v1.3"):
|
|
PyTorchProfiler(profiled_functions=[])
|
|
|
|
|
|
def test_v1_5_0_running_sanity_check():
|
|
trainer = Trainer()
|
|
with pytest.deprecated_call(match='has been renamed to `Trainer.sanity_checking`'):
|
|
assert not trainer.running_sanity_check
|
|
|
|
|
|
def test_old_training_step_signature_with_opt_idx_manual_opt(tmpdir):
|
|
|
|
class OldSignatureModel(BoringModel):
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.automatic_optimization = False
|
|
|
|
def training_step(self, batch, batch_idx, optimizer_idx):
|
|
assert optimizer_idx is not None
|
|
return super().training_step(batch, batch_idx)
|
|
|
|
def configure_optimizers(self):
|
|
return [optim.SGD(self.parameters(), lr=1e-2), optim.SGD(self.parameters(), lr=1e-2)]
|
|
|
|
model = OldSignatureModel()
|
|
trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=2)
|
|
|
|
with pytest.deprecated_call(match="`training_step` .* `optimizer_idx` .* manual .* will be removed in v1.5"):
|
|
trainer.fit(model)
|
|
|
|
|
|
def test_v1_5_0_model_checkpoint_period(tmpdir):
|
|
with no_warning_call(DeprecationWarning):
|
|
ModelCheckpoint(dirpath=tmpdir)
|
|
with pytest.deprecated_call(match="is deprecated in v1.3 and will be removed in v1.5"):
|
|
ModelCheckpoint(dirpath=tmpdir, period=1)
|
|
|
|
|
|
def test_v1_5_0_old_on_validation_epoch_end(tmpdir):
|
|
callback_warning_cache.clear()
|
|
|
|
class OldSignature(Callback):
|
|
|
|
def on_validation_epoch_end(self, trainer, pl_module): # noqa
|
|
...
|
|
|
|
model = BoringModel()
|
|
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, callbacks=OldSignature())
|
|
|
|
with pytest.deprecated_call(match="old signature will be removed in v1.5"):
|
|
trainer.fit(model)
|
|
|
|
class OldSignatureModel(BoringModel):
|
|
|
|
def on_validation_epoch_end(self): # noqa
|
|
...
|
|
|
|
model = OldSignatureModel()
|
|
|
|
with pytest.deprecated_call(match="old signature will be removed in v1.5"):
|
|
trainer.fit(model)
|
|
|
|
callback_warning_cache.clear()
|
|
|
|
class NewSignature(Callback):
|
|
|
|
def on_validation_epoch_end(self, trainer, pl_module, outputs):
|
|
...
|
|
|
|
trainer.callbacks = [NewSignature()]
|
|
with no_deprecated_call(match="`Callback.on_validation_epoch_end` signature has changed in v1.3."):
|
|
trainer.fit(model)
|
|
|
|
class NewSignatureModel(BoringModel):
|
|
|
|
def on_validation_epoch_end(self, outputs):
|
|
...
|
|
|
|
model = NewSignatureModel()
|
|
with no_deprecated_call(match="`ModelHooks.on_validation_epoch_end` signature has changed in v1.3."):
|
|
trainer.fit(model)
|
|
|
|
|
|
def test_v1_5_0_old_on_test_epoch_end(tmpdir):
|
|
callback_warning_cache.clear()
|
|
|
|
class OldSignature(Callback):
|
|
|
|
def on_test_epoch_end(self, trainer, pl_module): # noqa
|
|
...
|
|
|
|
model = BoringModel()
|
|
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, callbacks=OldSignature())
|
|
|
|
with pytest.deprecated_call(match="old signature will be removed in v1.5"):
|
|
trainer.test(model)
|
|
|
|
class OldSignatureModel(BoringModel):
|
|
|
|
def on_test_epoch_end(self): # noqa
|
|
...
|
|
|
|
model = OldSignatureModel()
|
|
|
|
with pytest.deprecated_call(match="old signature will be removed in v1.5"):
|
|
trainer.test(model)
|
|
|
|
callback_warning_cache.clear()
|
|
|
|
class NewSignature(Callback):
|
|
|
|
def on_test_epoch_end(self, trainer, pl_module, outputs):
|
|
...
|
|
|
|
trainer.callbacks = [NewSignature()]
|
|
with no_deprecated_call(match="`Callback.on_test_epoch_end` signature has changed in v1.3."):
|
|
trainer.test(model)
|
|
|
|
class NewSignatureModel(BoringModel):
|
|
|
|
def on_test_epoch_end(self, outputs):
|
|
...
|
|
|
|
model = NewSignatureModel()
|
|
with no_deprecated_call(match="`ModelHooks.on_test_epoch_end` signature has changed in v1.3."):
|
|
trainer.test(model)
|
|
|
|
|
|
@pytest.mark.parametrize("cls", (BaseProfiler, SimpleProfiler, AdvancedProfiler, PyTorchProfiler))
|
|
def test_v1_5_0_profiler_output_filename(tmpdir, cls):
|
|
filepath = str(tmpdir / "test.txt")
|
|
with pytest.deprecated_call(match="`output_filename` parameter has been removed"):
|
|
profiler = cls(output_filename=filepath)
|
|
assert profiler.dirpath == tmpdir
|
|
assert profiler.filename == "test"
|
|
|
|
|
|
def test_v1_5_0_trainer_training_trick_mixin(tmpdir):
|
|
model = BoringModel()
|
|
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, checkpoint_callback=False, logger=False)
|
|
trainer.fit(model)
|
|
with pytest.deprecated_call(match="is deprecated in v1.3 and will be removed in v1.5"):
|
|
trainer.print_nan_gradients()
|
|
|
|
dummy_loss = torch.tensor(1.0)
|
|
with pytest.deprecated_call(match="is deprecated in v1.3 and will be removed in v1.5"):
|
|
trainer.detect_nan_tensors(dummy_loss)
|
|
|
|
|
|
def test_v1_5_0_auto_move_data():
|
|
with pytest.deprecated_call(match="deprecated in v1.3 and will be removed in v1.5.*was applied to `bar`"):
|
|
|
|
class Foo:
|
|
|
|
@auto_move_data
|
|
def bar(self):
|
|
pass
|
|
|
|
|
|
def test_v1_5_0_lightning_module_write_prediction(tmpdir):
|
|
|
|
class DeprecatedWritePredictionsModel(BoringModel):
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
self._predictions_file = os.path.join(tmpdir, "predictions.pt")
|
|
|
|
def test_step(self, batch, batch_idx):
|
|
super().test_step(batch, batch_idx)
|
|
self.write_prediction("a", torch.Tensor(0), self._predictions_file)
|
|
|
|
def test_epoch_end(self, outputs):
|
|
self.write_prediction_dict({"a": "b"}, self._predictions_file)
|
|
|
|
with pytest.deprecated_call(match="`write_prediction` was deprecated in v1.3 and will be removed in v1.5"):
|
|
model = DeprecatedWritePredictionsModel()
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
checkpoint_callback=False,
|
|
logger=False,
|
|
)
|
|
trainer.test(model)
|
|
|
|
with pytest.deprecated_call(match="`write_prediction_dict` was deprecated in v1.3 and will be removed in v1.5"):
|
|
model = DeprecatedWritePredictionsModel()
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
checkpoint_callback=False,
|
|
logger=False,
|
|
)
|
|
trainer.test(model)
|
|
|
|
|
|
def test_v1_5_0_trainer_logging_mixin(tmpdir):
|
|
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, checkpoint_callback=False, logger=False)
|
|
with pytest.deprecated_call(match="is deprecated in v1.3 and will be removed in v1.5"):
|
|
trainer.metrics_to_scalars({})
|
|
|
|
|
|
def test_v1_5_0_lighting_module_grad_norm(tmpdir):
|
|
model = BoringModel()
|
|
with pytest.deprecated_call(match="is deprecated in v1.3 and will be removed in v1.5"):
|
|
model.grad_norm(2)
|