232 lines
7.6 KiB
Python
232 lines
7.6 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from abc import ABC
|
|
from argparse import ArgumentParser
|
|
from distutils.version import LooseVersion
|
|
from random import shuffle
|
|
from warnings import warn
|
|
|
|
import numpy as np
|
|
import torch
|
|
from torch.nn import functional as F
|
|
from torch.utils.data import random_split
|
|
|
|
import pytorch_lightning as pl
|
|
from pl_examples import _DALI_AVAILABLE, _DATASETS_PATH, _TORCHVISION_AVAILABLE, cli_lightning_logo
|
|
|
|
if _TORCHVISION_AVAILABLE:
|
|
from torchvision import transforms
|
|
from torchvision.datasets.mnist import MNIST
|
|
else:
|
|
from tests.helpers.datasets import MNIST
|
|
|
|
if _DALI_AVAILABLE:
|
|
from nvidia.dali import __version__ as dali_version
|
|
from nvidia.dali import ops
|
|
from nvidia.dali.pipeline import Pipeline
|
|
from nvidia.dali.plugin.pytorch import DALIClassificationIterator
|
|
|
|
NEW_DALI_API = LooseVersion(dali_version) >= LooseVersion('0.28.0')
|
|
if NEW_DALI_API:
|
|
from nvidia.dali.plugin.base_iterator import LastBatchPolicy
|
|
else:
|
|
warn('NVIDIA DALI is not available')
|
|
ops, Pipeline, DALIClassificationIterator, LastBatchPolicy = ..., ABC, ABC, ABC
|
|
|
|
|
|
class ExternalMNISTInputIterator(object):
|
|
"""
|
|
This iterator class wraps torchvision's MNIST dataset and returns the images and labels in batches
|
|
"""
|
|
|
|
def __init__(self, mnist_ds, batch_size):
|
|
self.batch_size = batch_size
|
|
self.mnist_ds = mnist_ds
|
|
self.indices = list(range(len(self.mnist_ds)))
|
|
shuffle(self.indices)
|
|
|
|
def __iter__(self):
|
|
self.i = 0
|
|
self.n = len(self.mnist_ds)
|
|
return self
|
|
|
|
def __next__(self):
|
|
batch = []
|
|
labels = []
|
|
for _ in range(self.batch_size):
|
|
index = self.indices[self.i]
|
|
img, label = self.mnist_ds[index]
|
|
batch.append(img.numpy())
|
|
labels.append(np.array([label], dtype=np.uint8))
|
|
self.i = (self.i + 1) % self.n
|
|
return (batch, labels)
|
|
|
|
|
|
class ExternalSourcePipeline(Pipeline):
|
|
"""
|
|
This DALI pipeline class just contains the MNIST iterator
|
|
"""
|
|
|
|
def __init__(self, batch_size, eii, num_threads, device_id):
|
|
super(ExternalSourcePipeline, self).__init__(batch_size, num_threads, device_id, seed=12)
|
|
self.source = ops.ExternalSource(source=eii, num_outputs=2)
|
|
self.build()
|
|
|
|
def define_graph(self):
|
|
images, labels = self.source()
|
|
return images, labels
|
|
|
|
|
|
class DALIClassificationLoader(DALIClassificationIterator):
|
|
"""
|
|
This class extends DALI's original `DALIClassificationIterator` with the `__len__()` function
|
|
so that we can call `len()` on it
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
pipelines,
|
|
size=-1,
|
|
reader_name=None,
|
|
auto_reset=False,
|
|
fill_last_batch=True,
|
|
dynamic_shape=False,
|
|
last_batch_padded=False,
|
|
):
|
|
if NEW_DALI_API:
|
|
last_batch_policy = LastBatchPolicy.FILL if fill_last_batch else LastBatchPolicy.DROP
|
|
super().__init__(
|
|
pipelines,
|
|
size,
|
|
reader_name,
|
|
auto_reset,
|
|
dynamic_shape,
|
|
last_batch_policy=last_batch_policy,
|
|
last_batch_padded=last_batch_padded
|
|
)
|
|
else:
|
|
super().__init__(
|
|
pipelines, size, reader_name, auto_reset, fill_last_batch, dynamic_shape, last_batch_padded
|
|
)
|
|
self._fill_last_batch = fill_last_batch
|
|
|
|
def __len__(self):
|
|
batch_count = self._size // (self._num_gpus * self.batch_size)
|
|
last_batch = 1 if self._fill_last_batch else 1
|
|
return batch_count + last_batch
|
|
|
|
|
|
class LitClassifier(pl.LightningModule):
|
|
|
|
def __init__(self, hidden_dim=128, learning_rate=1e-3):
|
|
super().__init__()
|
|
self.save_hyperparameters()
|
|
|
|
self.l1 = torch.nn.Linear(28 * 28, self.hparams.hidden_dim)
|
|
self.l2 = torch.nn.Linear(self.hparams.hidden_dim, 10)
|
|
|
|
def forward(self, x):
|
|
x = x.view(x.size(0), -1)
|
|
x = torch.relu(self.l1(x))
|
|
x = torch.relu(self.l2(x))
|
|
return x
|
|
|
|
def split_batch(self, batch):
|
|
return batch[0]["data"], batch[0]["label"].squeeze().long()
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
x, y = self.split_batch(batch)
|
|
y_hat = self(x)
|
|
loss = F.cross_entropy(y_hat, y)
|
|
return loss
|
|
|
|
def validation_step(self, batch, batch_idx):
|
|
x, y = self.split_batch(batch)
|
|
y_hat = self(x)
|
|
loss = F.cross_entropy(y_hat, y)
|
|
self.log('valid_loss', loss)
|
|
|
|
def test_step(self, batch, batch_idx):
|
|
x, y = self.split_batch(batch)
|
|
y_hat = self(x)
|
|
loss = F.cross_entropy(y_hat, y)
|
|
self.log('test_loss', loss)
|
|
|
|
def configure_optimizers(self):
|
|
return torch.optim.Adam(self.parameters(), lr=self.hparams.learning_rate)
|
|
|
|
@staticmethod
|
|
def add_model_specific_args(parent_parser):
|
|
parser = ArgumentParser(parents=[parent_parser], add_help=False)
|
|
parser.add_argument('--hidden_dim', type=int, default=128)
|
|
parser.add_argument('--learning_rate', type=float, default=0.0001)
|
|
return parser
|
|
|
|
|
|
def cli_main():
|
|
if not _DALI_AVAILABLE:
|
|
return
|
|
|
|
pl.seed_everything(1234)
|
|
|
|
# ------------
|
|
# args
|
|
# ------------
|
|
parser = ArgumentParser()
|
|
parser.add_argument('--batch_size', default=32, type=int)
|
|
parser = pl.Trainer.add_argparse_args(parser)
|
|
parser = LitClassifier.add_model_specific_args(parser)
|
|
args = parser.parse_args()
|
|
|
|
# ------------
|
|
# data
|
|
# ------------
|
|
dataset = MNIST(_DATASETS_PATH, train=True, download=True, transform=transforms.ToTensor())
|
|
mnist_test = MNIST(_DATASETS_PATH, train=False, download=True, transform=transforms.ToTensor())
|
|
mnist_train, mnist_val = random_split(dataset, [55000, 5000])
|
|
|
|
eii_train = ExternalMNISTInputIterator(mnist_train, args.batch_size)
|
|
eii_val = ExternalMNISTInputIterator(mnist_val, args.batch_size)
|
|
eii_test = ExternalMNISTInputIterator(mnist_test, args.batch_size)
|
|
|
|
pipe_train = ExternalSourcePipeline(batch_size=args.batch_size, eii=eii_train, num_threads=2, device_id=0)
|
|
train_loader = DALIClassificationLoader(pipe_train, size=len(mnist_train), auto_reset=True, fill_last_batch=True)
|
|
|
|
pipe_val = ExternalSourcePipeline(batch_size=args.batch_size, eii=eii_val, num_threads=2, device_id=0)
|
|
val_loader = DALIClassificationLoader(pipe_val, size=len(mnist_val), auto_reset=True, fill_last_batch=False)
|
|
|
|
pipe_test = ExternalSourcePipeline(batch_size=args.batch_size, eii=eii_test, num_threads=2, device_id=0)
|
|
test_loader = DALIClassificationLoader(pipe_test, size=len(mnist_test), auto_reset=True, fill_last_batch=False)
|
|
|
|
# ------------
|
|
# model
|
|
# ------------
|
|
model = LitClassifier(args.hidden_dim, args.learning_rate)
|
|
|
|
# ------------
|
|
# training
|
|
# ------------
|
|
trainer = pl.Trainer.from_argparse_args(args)
|
|
trainer.fit(model, train_loader, val_loader)
|
|
|
|
# ------------
|
|
# testing
|
|
# ------------
|
|
trainer.test(test_dataloaders=test_loader)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
cli_lightning_logo()
|
|
cli_main()
|