265 lines
11 KiB
Python
265 lines
11 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import dataclasses
|
|
import numbers
|
|
from collections import defaultdict, namedtuple, OrderedDict
|
|
from dataclasses import InitVar
|
|
from typing import Any, ClassVar, List, Optional
|
|
|
|
import pytest
|
|
|
|
from lightning_app.utilities.apply_func import apply_to_collection
|
|
from lightning_app.utilities.exceptions import MisconfigurationException
|
|
from lightning_app.utilities.imports import _is_numpy_available, _is_torch_available
|
|
|
|
if _is_torch_available():
|
|
import torch
|
|
|
|
if _is_numpy_available():
|
|
import numpy as np
|
|
|
|
|
|
@pytest.mark.skipif(not (_is_torch_available() and _is_numpy_available()), reason="Requires torch and numpy")
|
|
def test_recursive_application_to_collection():
|
|
ntc = namedtuple("Foo", ["bar"])
|
|
|
|
@dataclasses.dataclass
|
|
class Feature:
|
|
input_ids: torch.Tensor
|
|
segment_ids: np.ndarray
|
|
|
|
def __eq__(self, o: object) -> bool:
|
|
if not isinstance(o, Feature):
|
|
return NotImplemented
|
|
else:
|
|
return torch.equal(self.input_ids, o.input_ids) and np.equal(self.segment_ids, o.segment_ids).all()
|
|
|
|
@dataclasses.dataclass
|
|
class ModelExample:
|
|
example_ids: List[str]
|
|
feature: Feature
|
|
label: torch.Tensor
|
|
some_constant: int = dataclasses.field(init=False)
|
|
|
|
def __post_init__(self):
|
|
self.some_constant = 7
|
|
|
|
def __eq__(self, o: object) -> bool:
|
|
if not isinstance(o, ModelExample):
|
|
return NotImplemented
|
|
else:
|
|
return (
|
|
self.example_ids == o.example_ids
|
|
and self.feature == o.feature
|
|
and torch.equal(self.label, o.label)
|
|
and self.some_constant == o.some_constant
|
|
)
|
|
|
|
@dataclasses.dataclass
|
|
class WithClassVar:
|
|
class_var: ClassVar[int] = 0
|
|
dummy: Any
|
|
|
|
def __eq__(self, o: object) -> bool:
|
|
if not isinstance(o, WithClassVar):
|
|
return NotImplemented
|
|
elif isinstance(self.dummy, torch.Tensor):
|
|
return torch.equal(self.dummy, o.dummy)
|
|
else:
|
|
return self.dummy == o.dummy
|
|
|
|
@dataclasses.dataclass
|
|
class WithInitVar:
|
|
dummy: Any
|
|
override: InitVar[Optional[Any]] = None
|
|
|
|
def __post_init__(self, override: Optional[Any]):
|
|
if override is not None:
|
|
self.dummy = override
|
|
|
|
def __eq__(self, o: object) -> bool:
|
|
if not isinstance(o, WithInitVar):
|
|
return NotImplemented
|
|
elif isinstance(self.dummy, torch.Tensor):
|
|
return torch.equal(self.dummy, o.dummy)
|
|
else:
|
|
return self.dummy == o.dummy
|
|
|
|
@dataclasses.dataclass
|
|
class WithClassAndInitVar:
|
|
class_var: ClassVar[torch.Tensor] = torch.tensor(0)
|
|
dummy: Any
|
|
override: InitVar[Optional[Any]] = torch.tensor(1)
|
|
|
|
def __post_init__(self, override: Optional[Any]):
|
|
if override is not None:
|
|
self.dummy = override
|
|
|
|
def __eq__(self, o: object) -> bool:
|
|
if not isinstance(o, WithClassAndInitVar):
|
|
return NotImplemented
|
|
elif isinstance(self.dummy, torch.Tensor):
|
|
return torch.equal(self.dummy, o.dummy)
|
|
else:
|
|
return self.dummy == o.dummy
|
|
|
|
model_example = ModelExample(
|
|
example_ids=["i-1", "i-2", "i-3"],
|
|
feature=Feature(input_ids=torch.tensor([1.0, 2.0, 3.0]), segment_ids=np.array([4.0, 5.0, 6.0])),
|
|
label=torch.tensor([7.0, 8.0, 9.0]),
|
|
)
|
|
|
|
to_reduce = {
|
|
"a": torch.tensor([1.0]), # Tensor
|
|
"b": [torch.tensor([2.0])], # list
|
|
"c": (torch.tensor([100.0]),), # tuple
|
|
"d": ntc(bar=5.0), # named tuple
|
|
"e": np.array([10.0]), # numpy array
|
|
"f": "this_is_a_dummy_str", # string
|
|
"g": 12.0, # number
|
|
"h": Feature(input_ids=torch.tensor([1.0, 2.0, 3.0]), segment_ids=np.array([4.0, 5.0, 6.0])), # dataclass
|
|
"i": model_example, # nested dataclass
|
|
"j": WithClassVar(torch.arange(3)), # dataclass with class variable
|
|
"k": WithInitVar("this_gets_overridden", torch.tensor([2.0])), # dataclass with init-only variable
|
|
"l": WithClassAndInitVar(model_example, None), # nested dataclass with class and init-only variables
|
|
}
|
|
|
|
model_example_result = ModelExample(
|
|
example_ids=["i-1", "i-2", "i-3"],
|
|
feature=Feature(input_ids=torch.tensor([2.0, 4.0, 6.0]), segment_ids=np.array([8.0, 10.0, 12.0])),
|
|
label=torch.tensor([14.0, 16.0, 18.0]),
|
|
)
|
|
|
|
expected_result = {
|
|
"a": torch.tensor([2.0]),
|
|
"b": [torch.tensor([4.0])],
|
|
"c": (torch.tensor([200.0]),),
|
|
"d": ntc(bar=torch.tensor([10.0])),
|
|
"e": np.array([20.0]),
|
|
"f": "this_is_a_dummy_str",
|
|
"g": 24.0,
|
|
"h": Feature(input_ids=torch.tensor([2.0, 4.0, 6.0]), segment_ids=np.array([8.0, 10.0, 12.0])),
|
|
"i": model_example_result,
|
|
"j": WithClassVar(torch.arange(0, 6, 2)),
|
|
"k": WithInitVar(torch.tensor([4.0])),
|
|
"l": WithClassAndInitVar(model_example_result, None),
|
|
}
|
|
|
|
reduced = apply_to_collection(to_reduce, (torch.Tensor, numbers.Number, np.ndarray), lambda x: x * 2)
|
|
|
|
assert isinstance(reduced, dict), "Type Consistency of dict not preserved"
|
|
assert all(x in reduced for x in to_reduce), "Not all entries of the dict were preserved"
|
|
assert all(
|
|
isinstance(reduced[k], type(expected_result[k])) for k in to_reduce
|
|
), "At least one type was not correctly preserved"
|
|
|
|
assert isinstance(reduced["a"], torch.Tensor), "Reduction Result of a Tensor should be a Tensor"
|
|
assert torch.equal(expected_result["a"], reduced["a"]), "Reduction of a tensor does not yield the expected value"
|
|
|
|
assert isinstance(reduced["b"], list), "Reduction Result of a list should be a list"
|
|
assert all(
|
|
torch.equal(x, y) for x, y in zip(reduced["b"], expected_result["b"])
|
|
), "At least one value of list reduction did not come out as expected"
|
|
|
|
assert isinstance(reduced["c"], tuple), "Reduction Result of a tuple should be a tuple"
|
|
assert all(
|
|
torch.equal(x, y) for x, y in zip(reduced["c"], expected_result["c"])
|
|
), "At least one value of tuple reduction did not come out as expected"
|
|
|
|
assert isinstance(reduced["d"], ntc), "Type Consistency for named tuple not given"
|
|
assert isinstance(
|
|
reduced["d"].bar, numbers.Number
|
|
), "Failure in type promotion while reducing fields of named tuples"
|
|
assert reduced["d"].bar == expected_result["d"].bar
|
|
|
|
assert isinstance(reduced["e"], np.ndarray), "Type Promotion in reduction of numpy arrays failed"
|
|
assert reduced["e"] == expected_result["e"], "Reduction of numpy array did not yield the expected result"
|
|
|
|
assert isinstance(reduced["f"], str), "A string should not be reduced"
|
|
assert reduced["f"] == expected_result["f"], "String not preserved during reduction"
|
|
|
|
assert isinstance(reduced["g"], numbers.Number), "Reduction of a number should result in a number"
|
|
assert reduced["g"] == expected_result["g"], "Reduction of a number did not yield the desired result"
|
|
|
|
def _assert_dataclass_reduction(actual, expected, dataclass_type: str = ""):
|
|
assert dataclasses.is_dataclass(actual) and not isinstance(
|
|
actual, type
|
|
), f"Reduction of a {dataclass_type} dataclass should result in a dataclass"
|
|
for field in dataclasses.fields(actual):
|
|
if dataclasses.is_dataclass(field.type):
|
|
_assert_dataclass_reduction(getattr(actual, field.name), getattr(expected, field.name), "nested")
|
|
assert actual == expected, f"Reduction of a {dataclass_type} dataclass did not yield the desired result"
|
|
|
|
_assert_dataclass_reduction(reduced["h"], expected_result["h"])
|
|
|
|
_assert_dataclass_reduction(reduced["i"], expected_result["i"])
|
|
|
|
dataclass_type = "ClassVar-containing"
|
|
_assert_dataclass_reduction(reduced["j"], expected_result["j"], dataclass_type)
|
|
assert WithClassVar.class_var == 0, f"Reduction of a {dataclass_type} dataclass should not change the class var"
|
|
|
|
_assert_dataclass_reduction(reduced["k"], expected_result["k"], "InitVar-containing")
|
|
|
|
dataclass_type = "Class-and-InitVar-containing"
|
|
_assert_dataclass_reduction(reduced["l"], expected_result["l"], dataclass_type)
|
|
assert torch.equal(
|
|
WithClassAndInitVar.class_var, torch.tensor(0)
|
|
), f"Reduction of a {dataclass_type} dataclass should not change the class var"
|
|
|
|
# mapping support
|
|
reduced = apply_to_collection({"a": 1, "b": 2}, int, lambda x: str(x))
|
|
assert reduced == {"a": "1", "b": "2"}
|
|
reduced = apply_to_collection(OrderedDict([("b", 2), ("a", 1)]), int, lambda x: str(x))
|
|
assert reduced == OrderedDict([("b", "2"), ("a", "1")])
|
|
|
|
# custom mappings
|
|
class _CustomCollection(dict):
|
|
def __init__(self, initial_dict):
|
|
super().__init__(initial_dict)
|
|
|
|
to_reduce = _CustomCollection({"a": 1, "b": 2, "c": 3})
|
|
reduced = apply_to_collection(to_reduce, int, lambda x: str(x))
|
|
assert reduced == _CustomCollection({"a": "1", "b": "2", "c": "3"})
|
|
|
|
# defaultdict
|
|
to_reduce = defaultdict(int, {"a": 1, "b": 2, "c": 3})
|
|
reduced = apply_to_collection(to_reduce, int, lambda x: str(x))
|
|
assert reduced == defaultdict(int, {"a": "1", "b": "2", "c": "3"})
|
|
|
|
|
|
def test_apply_to_collection_include_none():
|
|
to_reduce = [1, 2, 3.4, 5.6, 7, (8, 9.1, {10: 10})]
|
|
|
|
def fn(x):
|
|
if isinstance(x, float):
|
|
return x
|
|
|
|
reduced = apply_to_collection(to_reduce, (int, float), fn)
|
|
assert reduced == [None, None, 3.4, 5.6, None, (None, 9.1, {10: None})]
|
|
|
|
reduced = apply_to_collection(to_reduce, (int, float), fn, include_none=False)
|
|
assert reduced == [3.4, 5.6, (9.1, {})]
|
|
|
|
|
|
@pytest.mark.skipif(not _is_torch_available(), reason="Requires torch and numpy")
|
|
def test_apply_to_collection_frozen_dataclass():
|
|
@dataclasses.dataclass(frozen=True)
|
|
class Foo:
|
|
input: torch.Tensor
|
|
|
|
foo = Foo(torch.tensor(0))
|
|
|
|
with pytest.raises(MisconfigurationException, match="frozen dataclass was passed"):
|
|
apply_to_collection(foo, torch.Tensor, lambda t: t.to(torch.int))
|