lightning/pytorch_lightning/accelerators/legacy/tpu_accelerator.py

369 lines
13 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import io
import os
import re
from typing import Any, Callable, Optional, Union
import torch
import torch.multiprocessing as mp
from torch.optim import Optimizer
from pytorch_lightning import _logger as log
from pytorch_lightning.accelerators.legacy.accelerator import Accelerator, ReduceOp
from pytorch_lightning.cluster_environments import ClusterEnvironment
from pytorch_lightning.core import LightningModule
from pytorch_lightning.utilities import (
_TPU_AVAILABLE,
move_data_to_device,
rank_zero_info,
rank_zero_only,
rank_zero_warn,
)
from pytorch_lightning.utilities.cloud_io import atomic_save
from pytorch_lightning.utilities.exceptions import MisconfigurationException
if _TPU_AVAILABLE:
import torch_xla
import torch_xla.core.xla_model as xm
import torch_xla.distributed.parallel_loader as xla_pl
import torch_xla.distributed.xla_multiprocessing as xmp
class TPUAccelerator(Accelerator):
def __init__(self, trainer, cluster_environment: Optional[ClusterEnvironment] = None):
"""
Runs training using TPUs (colab, single machine or pod)
Example::
# default
trainer = Trainer(accelerator=TPUAccelerator())
"""
super().__init__(trainer, cluster_environment)
self.start_method = None
self.mp_queue = None
self.nickname = None
def setup(self, model):
rank_zero_info(f'training on {self.trainer.tpu_cores} TPU cores')
# TODO: Move this check to Trainer __init__ or device parser
if not _TPU_AVAILABLE:
raise MisconfigurationException('PyTorch XLA not installed.')
# see: https://discuss.pytorch.org/t/segfault-with-multiprocessing-queue/81292/2
self.start_method = 'fork'
# pass in a state q
smp = mp.get_context(self.start_method)
self.mp_queue = smp.SimpleQueue()
self.trainer.model = model
def teardown(self):
model = self.trainer.model
# restore main state with best weights
best_path = self.mp_queue.get()
results = self.mp_queue.get()
last_path = self.mp_queue.get()
# transfer back the best path to the trainer
if self.trainer.checkpoint_callback is not None:
self.trainer.checkpoint_callback.best_model_path = best_path
# todo, pass also bets score
# load last weights
if last_path and not self.trainer.testing:
ckpt = torch.load(last_path, map_location=lambda storage, loc: storage)
model.load_state_dict(ckpt)
self.trainer.model = model
# when training completes, load the weights back in main process
self.__load_weights_on_main_process()
return results
def train(self):
model = self.trainer.model
# train
if self.trainer.tpu_id is not None:
self.tpu_train_in_process(self.trainer.tpu_id, model, self.trainer, self.mp_queue)
else:
xmp.spawn(
self.tpu_train_in_process,
args=(model, self.trainer, self.mp_queue),
nprocs=self.trainer.tpu_cores,
start_method=self.start_method
)
def __load_weights_on_main_process(self):
model = self.trainer.model
# load weights if not interrupted
if self.trainer.on_colab_kaggle and not self.trainer.testing:
self.load_spawn_weights(model)
self.trainer.model = model
def tpu_train_in_process(self, tpu_core_idx: int, model: LightningModule, trainer=None, mp_queue=None):
"""
Here we are inside each individual process
"""
# Todo: required argument `tpu_core_idx` is not used
if not trainer:
trainer = self.trainer
trainer.call_setup_hook(model)
# setup TPU training
self.__setup_tpu_training(model, trainer)
# set up training routine
self.trainer.train_loop.setup_training(model)
# train or test
results = self.train_or_test()
# save weights at the end of training
self.__save_end_of_training_weights(model, trainer)
# persist info in spawn
self.transfer_distrib_spawn_state_on_fit_end(model, mp_queue, results)
def _step(self, model_step: Callable, args):
args[0] = self.to_device(args[0])
return model_step(*args)
def training_step(self, args):
return self._step(self.trainer.model.training_step, args)
def validation_step(self, args):
return self._step(self.trainer.model.validation_step, args)
def test_step(self, args):
return self._step(self.trainer.model.test_step, args)
def predict(self, args):
return self._step(self.trainer.model.predict, args)
def process_dataloader(self, dataloader):
device = xm.xla_device(self.trainer.tpu_id)
dataloader = xla_pl.ParallelLoader(dataloader, [device])
dataloader = dataloader.per_device_loader(device)
return dataloader
def to_device(self, batch):
"""
Transfers the data to the TPU.
Args:
batch: A tensor or collection of tensors.
Return:
the tensor on the TPU device.
See Also:
- :func:`~pytorch_lightning.utilities.apply_func.move_data_to_device`
"""
if not _TPU_AVAILABLE:
raise MisconfigurationException(
'Requested to transfer batch to TPU but XLA is not available.'
' Are you sure this machine has TPUs?'
)
device = xm.xla_device(self.trainer.tpu_id)
return self.batch_to_device(batch, device)
def __save_end_of_training_weights(self, model: LightningModule, trainer):
# when training ends on these platforms dump weights to get out of the main process
if trainer.on_colab_kaggle:
rank_zero_warn('cleaning up... please do not interrupt')
self.save_spawn_weights(model)
def __setup_tpu_training(self, model: LightningModule, trainer):
# use the default device from the process
# tpu_device = xm.xla_device()
# if given an ordinal device, use this as the device
if trainer.tpu_id is not None:
tpu_device = xm.xla_device(trainer.tpu_id)
else:
tpu_device = xm.xla_device()
# track the device and move model to it
trainer._device = tpu_device
model.to(trainer._device)
# get the appropriate tpu ranks
trainer.tpu_local_core_rank = xm.get_local_ordinal()
trainer.tpu_global_core_rank = xm.get_ordinal()
# avoid duplicating progress bar
if trainer.tpu_global_core_rank != 0 and trainer.progress_bar_callback is not None:
trainer.progress_bar_callback.disable()
trainer.global_rank = trainer.tpu_local_core_rank
rank_zero_only.rank = trainer.global_rank
# CHOOSE OPTIMIZER
# allow for lr schedulers as well
self.setup_optimizers(model)
# init 16 bit for TPU
if trainer.precision == 16:
os.environ['XLA_USE_BF16'] = str(1)
log.info(f'INIT TPU local core: {trainer.tpu_local_core_rank},'
f' global rank: {trainer.tpu_global_core_rank}'
f' with XLA_USE_BF16={os.environ.get("XLA_USE_BF16")}')
def backward(self, closure_loss, optimizer, opt_idx, *args, **kwargs):
# do backward pass
if self.trainer.train_loop.automatic_optimization:
model = self.trainer.get_model()
model.backward(closure_loss, optimizer, opt_idx)
else:
closure_loss.backward(*args, **kwargs)
# detach after backward
closure_loss = closure_loss.detach()
return closure_loss
def _clip_gradients(self, optimizer: Optimizer, grad_clip_val: Union[float, int], norm_type: float = 2.0):
# this code is a modification of torch.nn.utils.clip_grad_norm_
# with TPU support based on https://github.com/pytorch/xla/blob/master/TROUBLESHOOTING.md
model = self.trainer.get_model()
parameters = model.parameters()
max_norm = grad_clip_val
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
parameters = list(filter(lambda p: p.grad is not None, parameters))
device = parameters[0].device
out = torch.empty(len(parameters), device=device)
for i, p in enumerate(parameters):
torch.norm(p.grad.data.to(device), norm_type, out=out[i])
total_norm = torch.norm(out, norm_type)
clip_coef = torch.tensor(max_norm, device=device) / (total_norm + self.norm_clipping_epsilon)
clip_coef = torch.min(clip_coef, torch.ones_like(clip_coef))
for p in parameters:
p.grad.data.mul_(clip_coef.to(p.grad.data.device))
def barrier(self, name: Optional[str] = None):
torch_xla.core.xla_model.rendezvous(f"pl.Trainer.{name}")
def early_stopping_should_stop(self, pl_module):
stop = torch.tensor(int(self.trainer.should_stop), device=pl_module.device, dtype=torch.int32)
stop = xm.mesh_reduce("stop_signal", stop, sum)
torch_xla.core.xla_model.rendezvous("pl.EarlyStoppingCallback.stop_distributed_training_check")
should_stop = int(stop.item()) == self.trainer.world_size
return should_stop
def save_spawn_weights(self, model):
"""
Dump a temporary checkpoint after ddp ends to get weights out of the process
"""
# Todo: required argument `model` is not used
if self.trainer.is_global_zero:
path = os.path.join(self.trainer.default_root_dir, '__temp_weight_distributed_end.ckpt')
self.trainer.save_checkpoint(path)
return path
def load_spawn_weights(self, original_model):
"""
Load the temp weights saved in the process
To recover the trained model from the ddp process we load the saved weights
"""
loaded_model = original_model
if self.trainer.is_global_zero:
# load weights saved in ddp
path = os.path.join(self.trainer.default_root_dir, '__temp_weight_distributed_end.ckpt')
loaded_model = original_model.__class__.load_from_checkpoint(path)
# copy loaded weights to old model
original_model.load_state_dict(loaded_model.state_dict())
# remove ddp weights
os.remove(path)
return loaded_model
def transfer_distrib_spawn_state_on_fit_end(self, model, mp_queue, results):
if self.trainer.distributed_backend not in ("ddp_spawn", "ddp_cpu", "tpu"):
return
# track the best model path
best_model_path = None
if self.trainer.checkpoint_callback is not None:
best_model_path = self.trainer.checkpoint_callback.best_model_path
if self.trainer.global_rank == 0 and mp_queue is not None:
rank_zero_warn('cleaning up ddp environment...')
# todo, pass complete checkpoint as state dictionary
mp_queue.put(best_model_path)
mp_queue.put(results)
# save the last weights
last_path = None
if not self.trainer.testing and best_model_path is not None and len(best_model_path) > 0:
last_path = re.sub('.ckpt', '.tmp_end.ckpt', best_model_path)
state_dict = move_data_to_device(model.state_dict(), torch.device("cpu"))
atomic_save(state_dict, last_path)
mp_queue.put(last_path)
def broadcast(self, obj, src=0):
buffer = io.BytesIO()
torch.save(obj, buffer)
data = bytearray(buffer.getbuffer())
data_tensor = torch.tensor(data).to(xm.xla_device(), dtype=torch.float)
data = xm.all_gather(data_tensor)
buffer = io.BytesIO(data.cpu().byte().numpy())
obj = torch.load(buffer)
return obj
def sync_tensor(self,
tensor: Union[torch.Tensor],
group: Optional[Any] = None,
reduce_op: Optional[Union[ReduceOp, str]] = None) -> torch.Tensor:
return tensor
@property
def norm_clipping_epsilon(self):
return 1e-6
def on_save(self, checkpoint):
"""
Move XLA tensors to CPU before saving
Recommended on XLA Guide:
https://github.com/pytorch/xla/blob/master/API_GUIDE.md#saving-and-loading-xla-tensors
"""
return move_data_to_device(checkpoint, torch.device("cpu"))
@property
def distributed_sampler_kwargs(self):
return dict(num_replicas=xm.xrt_world_size(), rank=xm.get_ordinal())
@property
def require_distributed_sampler(self):
return True