lightning/tests/tests_pytorch/callbacks/test_prediction_writer.py

132 lines
5.1 KiB
Python

# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from unittest.mock import ANY, call, Mock
import pytest
from torch.utils.data import DataLoader
from lightning.pytorch import Trainer
from lightning.pytorch.callbacks import BasePredictionWriter
from lightning.pytorch.demos.boring_classes import BoringModel, RandomDataset
from lightning.pytorch.utilities.exceptions import MisconfigurationException
class DummyPredictionWriter(BasePredictionWriter):
def write_on_batch_end(self, *_, **__):
pass
def write_on_epoch_end(self, *_, **__):
pass
def test_prediction_writer_invalid_write_interval():
"""Test that configuring an unknown interval name raises an error."""
with pytest.raises(MisconfigurationException, match=r"`write_interval` should be one of \['batch"):
DummyPredictionWriter("something")
def test_prediction_writer_hook_call_intervals():
"""Test that the `write_on_batch_end` and `write_on_epoch_end` hooks get invoked based on the defined
interval."""
DummyPredictionWriter.write_on_batch_end = Mock()
DummyPredictionWriter.write_on_epoch_end = Mock()
dataloader = DataLoader(RandomDataset(32, 64))
model = BoringModel()
cb = DummyPredictionWriter("batch_and_epoch")
trainer = Trainer(limit_predict_batches=4, callbacks=cb)
results = trainer.predict(model, dataloaders=dataloader)
assert len(results) == 4
assert cb.write_on_batch_end.call_count == 4
assert cb.write_on_epoch_end.call_count == 1
DummyPredictionWriter.write_on_batch_end.reset_mock()
DummyPredictionWriter.write_on_epoch_end.reset_mock()
cb = DummyPredictionWriter("batch_and_epoch")
trainer = Trainer(limit_predict_batches=4, callbacks=cb)
trainer.predict(model, dataloaders=dataloader, return_predictions=False)
assert cb.write_on_batch_end.call_count == 4
assert cb.write_on_epoch_end.call_count == 1
DummyPredictionWriter.write_on_batch_end.reset_mock()
DummyPredictionWriter.write_on_epoch_end.reset_mock()
cb = DummyPredictionWriter("batch")
trainer = Trainer(limit_predict_batches=4, callbacks=cb)
trainer.predict(model, dataloaders=dataloader, return_predictions=False)
assert cb.write_on_batch_end.call_count == 4
assert cb.write_on_epoch_end.call_count == 0
DummyPredictionWriter.write_on_batch_end.reset_mock()
DummyPredictionWriter.write_on_epoch_end.reset_mock()
cb = DummyPredictionWriter("epoch")
trainer = Trainer(limit_predict_batches=4, callbacks=cb)
trainer.predict(model, dataloaders=dataloader, return_predictions=False)
assert cb.write_on_batch_end.call_count == 0
assert cb.write_on_epoch_end.call_count == 1
@pytest.mark.parametrize("num_workers", [0, 2])
def test_prediction_writer_batch_indices(num_workers):
DummyPredictionWriter.write_on_batch_end = Mock()
DummyPredictionWriter.write_on_epoch_end = Mock()
dataloader = DataLoader(RandomDataset(32, 64), batch_size=4, num_workers=num_workers)
model = BoringModel()
writer = DummyPredictionWriter("batch_and_epoch")
trainer = Trainer(limit_predict_batches=4, callbacks=writer)
trainer.predict(model, dataloaders=dataloader)
writer.write_on_batch_end.assert_has_calls(
[
call(trainer, model, ANY, [0, 1, 2, 3], ANY, 0, 0),
call(trainer, model, ANY, [4, 5, 6, 7], ANY, 1, 0),
call(trainer, model, ANY, [8, 9, 10, 11], ANY, 2, 0),
call(trainer, model, ANY, [12, 13, 14, 15], ANY, 3, 0),
]
)
writer.write_on_epoch_end.assert_has_calls(
[
call(trainer, model, ANY, [[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15]]]),
]
)
def test_batch_level_batch_indices():
"""Test that batch_indices are returned when `return_predictions=False`."""
DummyPredictionWriter.write_on_batch_end = Mock()
class CustomBoringModel(BoringModel):
def on_predict_epoch_end(self, *args, **kwargs):
assert self.trainer.predict_loop.epoch_batch_indices == [[]]
writer = DummyPredictionWriter("batch")
model = CustomBoringModel()
dataloader = DataLoader(RandomDataset(32, 64), batch_size=4)
trainer = Trainer(limit_predict_batches=4, callbacks=writer)
trainer.predict(model, dataloaders=dataloader, return_predictions=False)
writer.write_on_batch_end.assert_has_calls(
[
call(trainer, model, ANY, [0, 1, 2, 3], ANY, 0, 0),
call(trainer, model, ANY, [4, 5, 6, 7], ANY, 1, 0),
call(trainer, model, ANY, [8, 9, 10, 11], ANY, 2, 0),
call(trainer, model, ANY, [12, 13, 14, 15], ANY, 3, 0),
]
)