lightning/tests/tests_pytorch/callbacks/test_gradient_accumulation_...

158 lines
6.0 KiB
Python

# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from unittest.mock import Mock, patch
import pytest
from lightning.pytorch import Trainer
from lightning.pytorch.callbacks import GradientAccumulationScheduler
from lightning.pytorch.demos.boring_classes import BoringModel
from lightning.pytorch.strategies import DeepSpeedStrategy
from lightning.pytorch.utilities.exceptions import MisconfigurationException
from lightning.pytorch.utilities.imports import _LIGHTNING_COLOSSALAI_AVAILABLE
if _LIGHTNING_COLOSSALAI_AVAILABLE:
from lightning_colossalai import ColossalAIStrategy
else:
ColossalAIStrategy = None
@pytest.mark.parametrize("accumulate_grad_batches", [1, 2, 3])
def test_trainer_accumulate_grad_batches_zero_grad(tmpdir, accumulate_grad_batches):
with patch("torch.optim.SGD.zero_grad") as sgd_zero_grad:
model = BoringModel()
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=20,
limit_val_batches=1,
max_epochs=1,
enable_model_summary=False,
accumulate_grad_batches=accumulate_grad_batches,
)
assert trainer.accumulate_grad_batches == accumulate_grad_batches
trainer.fit(model)
assert sgd_zero_grad.call_count == math.ceil(trainer.limit_train_batches / accumulate_grad_batches)
@pytest.mark.parametrize(
("accumulate_grad_batches", "expected_call_count"),
[
({1: 2, 3: 4}, 10 + 5 + 5 + 3),
({0: 2, 2: 1}, 5 + 5 + 10 + 10),
],
)
def test_trainer_accumulate_grad_batches_with_callback(tmpdir, accumulate_grad_batches, expected_call_count):
with patch("torch.optim.SGD.zero_grad") as sgd_zero_grad:
model = BoringModel()
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=10,
limit_val_batches=1,
max_epochs=4,
enable_model_summary=False,
callbacks=GradientAccumulationScheduler(accumulate_grad_batches),
)
assert trainer.accumulate_grad_batches == 1 # initial value of Trainer argument
trainer.fit(model)
assert sum(isinstance(cb, GradientAccumulationScheduler) for cb in trainer.callbacks) == 1
assert sgd_zero_grad.call_count == expected_call_count
@pytest.mark.parametrize(
"scheduling",
[
{1: 2, -3: 4},
{0: 2, "2": 1},
],
)
def test_invalid_keys_for_grad_accum_scheduler(scheduling):
with pytest.raises(MisconfigurationException, match="Epoch should be an int"):
_ = GradientAccumulationScheduler(scheduling=scheduling)
@pytest.mark.parametrize(
"scheduling",
[
{1: 0, 3: 4},
{0: 2, 2: "2"},
],
)
def test_invalid_values_for_grad_accum_scheduler(scheduling):
with pytest.raises(MisconfigurationException, match="Accumulation factor should be an int"):
_ = GradientAccumulationScheduler(scheduling=scheduling)
@pytest.mark.parametrize(
"strategy_class",
[
pytest.param(
ColossalAIStrategy,
marks=pytest.mark.skipif(not _LIGHTNING_COLOSSALAI_AVAILABLE, reason="Requires ColossalAI strategy"),
),
DeepSpeedStrategy,
],
)
def test_unsupported_strategies(strategy_class):
"""Test that an error is raised for strategies that require the gradient accumulation factor to be fixed."""
scheduler = GradientAccumulationScheduler({1: 2})
model = BoringModel()
trainer = Trainer()
trainer._accelerator_connector.strategy = Mock(spec=strategy_class)
with pytest.raises(RuntimeError, match="does not support `accumulate_grad_batches` changing between epochs"):
scheduler.on_train_start(trainer, model)
def test_unsupported_manual_optimization():
"""Test that an error is raised when attempting to use the callback with manual optimization."""
scheduler = GradientAccumulationScheduler({1: 2})
model = BoringModel()
model.automatic_optimization = False
trainer = Trainer()
with pytest.raises(RuntimeError, match="Automatic gradient accumulation and the `GradientAccumulationScheduler`"):
scheduler.on_train_start(trainer, model)
def test_warn_if_model_has_overridden_optimization_hooks():
"""Test that the callback warns if optimization hooks were overridden in the LightningModule."""
class OverriddenOptimizerStepModel(BoringModel):
def optimizer_step(self, *args, **kwargs):
super().optimizer_step(*args, **kwargs)
class OverriddenZeroGradModel(BoringModel):
def optimizer_zero_grad(self, *args, **kwargs):
super().optimizer_zero_grad(*args, **kwargs)
scheduler = GradientAccumulationScheduler({1: 2})
trainer = Trainer()
model = OverriddenOptimizerStepModel()
with pytest.warns(UserWarning, match="the hooks will not be called on every batch"):
scheduler.on_train_start(trainer, model)
model = OverriddenZeroGradModel()
with pytest.warns(UserWarning, match="the hooks will not be called on every batch"):
scheduler.on_train_start(trainer, model)
def test_raises_when_accumulate_grad_batches_with_callback(tmp_path):
"""Test that it is not allowed to set both the Trainer argument and also pass a callback."""
trainer = Trainer(
default_root_dir=tmp_path, accumulate_grad_batches=2, callbacks=[GradientAccumulationScheduler({0: 2})]
)
with pytest.raises(ValueError, match="`accumulate_grad_batches` and are using the `GradientAccumulationScheduler`"):
trainer.fit(BoringModel())