lightning/pytorch_lightning/trainer/evaluation_loop.py

451 lines
15 KiB
Python

"""
Validation loop
===============
The lightning validation loop handles everything except the actual computations of your model.
To decide what will happen in your validation loop, define the `validation_step` function.
Below are all the things lightning automates for you in the validation loop.
.. note:: Lightning will run 5 steps of validation in the beginning of training as a sanity
check so you don't have to wait until a full epoch to catch possible validation issues.
Check validation every n epochs
-------------------------------
If you have a small dataset you might want to check validation every n epochs
.. code-block:: python
# DEFAULT
trainer = Trainer(check_val_every_n_epoch=1)
Set how much of the validation set to check
-------------------------------------------
If you don't want to check 100% of the validation set (for debugging or if it's huge), set this flag
val_percent_check will be overwritten by overfit_pct if `overfit_pct > 0`
.. code-block:: python
# DEFAULT
trainer = Trainer(val_percent_check=1.0)
# check 10% only
trainer = Trainer(val_percent_check=0.1)
Set how much of the test set to check
-------------------------------------
If you don't want to check 100% of the test set (for debugging or if it's huge), set this flag
test_percent_check will be overwritten by overfit_pct if `overfit_pct > 0`
.. code-block:: python
# DEFAULT
trainer = Trainer(test_percent_check=1.0)
# check 10% only
trainer = Trainer(test_percent_check=0.1)
Set validation check frequency within 1 training epoch
------------------------------------------------------
For large datasets it's often desirable to check validation multiple times within a training loop.
Pass in a float to check that often within 1 training epoch.
Pass in an int k to check every k training batches. Must use an int if using an IterableDataset.
.. code-block:: python
# DEFAULT
trainer = Trainer(val_check_interval=0.95)
# check every .25 of an epoch
trainer = Trainer(val_check_interval=0.25)
# check every 100 train batches (ie: for IterableDatasets or fixed frequency)
trainer = Trainer(val_check_interval=100)
Set the number of validation sanity steps
-----------------------------------------
Lightning runs a few steps of validation in the beginning of training.
This avoids crashing in the validation loop sometime deep into a lengthy training loop.
.. code-block:: python
# DEFAULT
trainer = Trainer(num_sanity_val_steps=5)
You can use `Trainer(num_sanity_val_steps=0)` to skip the sanity check.
# Testing loop
To ensure you don't accidentally use test data to guide training decisions Lightning
makes running the test set deliberate.
**test**
You have two options to run the test set.
First case is where you test right after a full training routine.
.. code-block:: python
# run full training
trainer.fit(model)
# run test set
trainer.test()
Second case is where you load a model and run the test set
.. code-block:: python
model = MyLightningModule.load_from_metrics(
weights_path='/path/to/pytorch_checkpoint.ckpt',
tags_csv='/path/to/test_tube/experiment/version/meta_tags.csv',
on_gpu=True,
map_location=None
)
# init trainer with whatever options
trainer = Trainer(...)
# test (pass in the model)
trainer.test(model)
In this second case, the options you pass to trainer will be used when running
the test set (ie: 16-bit, dp, ddp, etc...)
"""
import sys
from abc import ABC, abstractmethod
from pprint import pprint
from typing import Callable
import torch
from torch.utils.data import DataLoader
from tqdm.auto import tqdm
from pytorch_lightning.core.lightning import LightningModule
from pytorch_lightning.overrides.data_parallel import LightningDistributedDataParallel, LightningDataParallel
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.utilities import rank_zero_warn
try:
import torch_xla.distributed.parallel_loader as xla_pl
import torch_xla.core.xla_model as xm
except ImportError:
XLA_AVAILABLE = False
else:
XLA_AVAILABLE = True
class TrainerEvaluationLoopMixin(ABC):
# this is just a summary on variables used in this abstract class,
# the proper values/initialisation should be done in child class
test_progress_bar: ...
val_progress_bar: ...
main_progress_bar: ...
use_ddp: bool
use_dp: bool
use_ddp2: bool
single_gpu: bool
data_parallel_device_ids: ...
model: LightningModule
num_test_batches: int
num_val_batches: int
fast_dev_run: ...
process_position: ...
process_output: ...
training_tqdm_dict: ...
proc_rank: int
current_epoch: int
callback_metrics: ...
test_dataloaders: DataLoader
val_dataloaders: DataLoader
use_tpu: bool
reload_dataloaders_every_epoch: ...
progress_bar_refresh_rate: ...
# Callback system
on_validation_start: Callable
on_validation_end: Callable
on_test_start: Callable
on_test_end: Callable
@abstractmethod
def copy_trainer_model_properties(self, *args):
"""Warning: this is just empty shell for code implemented in other class."""
@abstractmethod
def get_model(self):
"""Warning: this is just empty shell for code implemented in other class."""
@abstractmethod
def is_overriden(self, *args):
"""Warning: this is just empty shell for code implemented in other class."""
@abstractmethod
def transfer_batch_to_tpu(self, *args):
"""Warning: this is just empty shell for code implemented in other class."""
@abstractmethod
def transfer_batch_to_gpu(self, *args):
"""Warning: this is just empty shell for code implemented in other class."""
@abstractmethod
def add_tqdm_metrics(self, *args):
"""Warning: this is just empty shell for code implemented in other class."""
@abstractmethod
def log_metrics(self, *args):
"""Warning: this is just empty shell for code implemented in other class."""
@abstractmethod
def reset_test_dataloader(self, *args):
"""Warning: this is just empty shell for code implemented in other class."""
@abstractmethod
def reset_val_dataloader(self, *args):
"""Warning: this is just empty shell for code implemented in other class."""
def _evaluate(self, model: LightningModule, dataloaders, max_batches: int, test_mode: bool = False):
"""Run evaluation code.
Args:
model: PT model
dataloaders: list of PT dataloaders
max_batches: Scalar
test_mode:
"""
# enable eval mode
model.zero_grad()
model.eval()
# copy properties for forward overrides
self.copy_trainer_model_properties(model)
# disable gradients to save memory
torch.set_grad_enabled(False)
# bookkeeping
outputs = []
# run validation
for dataloader_idx, dataloader in enumerate(dataloaders):
dl_outputs = []
# on TPU we have to wrap it under the ParallelLoader
if self.use_tpu:
device = xm.xla_device()
dataloader = xla_pl.ParallelLoader(dataloader, [device])
dataloader = dataloader.per_device_loader(device)
for batch_idx, batch in enumerate(dataloader):
if batch is None:
continue
# stop short when on fast_dev_run (sets max_batch=1)
if batch_idx >= max_batches:
break
# -----------------
# RUN EVALUATION STEP
# -----------------
output = self.evaluation_forward(model, batch, batch_idx, dataloader_idx, test_mode)
# on dp / ddp2 might still want to do something with the batch parts
if test_mode:
if self.is_overriden('test_step_end'):
model_ref = self.get_model()
with self.profiler.profile('test_step_end'):
output = model_ref.test_step_end(output)
else:
if self.is_overriden('validation_step_end'):
model_ref = self.get_model()
with self.profiler.profile('validation_step_end'):
output = model_ref.validation_step_end(output)
# track outputs for collation
dl_outputs.append(output)
# batch done
if self.progress_bar_refresh_rate >= 1 and batch_idx % self.progress_bar_refresh_rate == 0:
if test_mode:
self.test_progress_bar.update(self.progress_bar_refresh_rate)
else:
self.val_progress_bar.update(self.progress_bar_refresh_rate)
self.main_progress_bar.update(self.progress_bar_refresh_rate)
outputs.append(dl_outputs)
eval_results = {}
# with a single dataloader don't pass an array
if len(dataloaders) == 1:
outputs = outputs[0]
# give model a chance to do something with the outputs (and method defined)
if isinstance(model, (LightningDistributedDataParallel, LightningDataParallel)):
model = model.module
if test_mode:
if self.is_overriden('test_end', model=model):
# TODO: remove in v1.0.0
eval_results = model.test_end(outputs)
rank_zero_warn('Method `test_end` was deprecated in 0.7.0 and will be removed 1.0.0.'
' Use `test_epoch_end` instead.', DeprecationWarning)
elif self.is_overriden('test_epoch_end', model=model):
eval_results = model.test_epoch_end(outputs)
else:
if self.is_overriden('validation_end', model=model):
# TODO: remove in v1.0.0
eval_results = model.validation_end(outputs)
rank_zero_warn('Method `validation_end` was deprecated in 0.7.0 and will be removed 1.0.0.'
' Use `validation_epoch_end` instead.', DeprecationWarning)
elif self.is_overriden('validation_epoch_end', model=model):
eval_results = model.validation_epoch_end(outputs)
# enable train mode again
model.train()
# enable gradients to save memory
torch.set_grad_enabled(True)
return eval_results
def run_evaluation(self, test_mode: bool = False):
# when testing make sure user defined a test step
if test_mode and not self.is_overriden('test_step'):
raise MisconfigurationException(
"You called `.test()` without defining model's `.test_step()`."
" Please define and try again")
# Validation/Test begin callbacks
if test_mode:
self.on_test_start()
else:
self.on_validation_start()
# hook
model = self.get_model()
model.on_pre_performance_check()
# select dataloaders
if test_mode:
if self.test_dataloaders is None:
self.reset_test_dataloader(model)
dataloaders = self.test_dataloaders
max_batches = self.num_test_batches
else:
# val
if self.val_dataloaders is None:
self.reset_val_dataloader(model)
dataloaders = self.val_dataloaders
max_batches = self.num_val_batches
# cap max batches to 1 when using fast_dev_run
if self.fast_dev_run:
max_batches = 1
# init validation or test progress bar
# main progress bar will already be closed when testing so initial position is free
position = 2 * self.process_position + (not test_mode)
desc = 'Testing' if test_mode else 'Validating'
total = max_batches if max_batches != float('inf') else None
pbar = tqdm(desc=desc, total=total, leave=test_mode, position=position,
disable=not self.progress_bar_refresh_rate, dynamic_ncols=True, file=sys.stdout)
setattr(self, f'{"test" if test_mode else "val"}_progress_bar', pbar)
# run evaluation
eval_results = self._evaluate(self.model, dataloaders, max_batches, test_mode)
_, prog_bar_metrics, log_metrics, callback_metrics, _ = self.process_output(eval_results)
# add metrics to prog bar
self.add_tqdm_metrics(prog_bar_metrics)
# log results of test
if test_mode and self.proc_rank == 0:
print('-' * 80)
print('TEST RESULTS')
pprint(callback_metrics)
print('-' * 80)
# log metrics
self.log_metrics(log_metrics, {})
# track metrics for callbacks
self.callback_metrics.update(callback_metrics)
# hook
model.on_post_performance_check()
# add model specific metrics
if not test_mode:
self.main_progress_bar.set_postfix(**self.training_tqdm_dict)
# close progress bar
if test_mode:
self.test_progress_bar.close()
else:
self.val_progress_bar.close()
# eventual dataset reloading
if test_mode:
if self.reload_dataloaders_every_epoch:
self.reset_test_dataloader(model)
else:
# val
if self.reload_dataloaders_every_epoch:
self.reset_val_dataloader(model)
# Validation/Test end callbacks
if test_mode:
self.on_test_end()
def evaluation_forward(self, model, batch, batch_idx, dataloader_idx, test_mode: bool = False):
# make dataloader_idx arg in validation_step optional
args = [batch, batch_idx]
if (test_mode and len(self.test_dataloaders) > 1) \
or (not test_mode and len(self.val_dataloaders) > 1):
args.append(dataloader_idx)
# handle DP, DDP forward
if self.use_ddp or self.use_dp or self.use_ddp2:
output = model(*args)
return output
# single GPU data transfer
if self.single_gpu:
# for single GPU put inputs on gpu manually
root_gpu = 0
if isinstance(self.data_parallel_device_ids, list):
root_gpu = self.data_parallel_device_ids[0]
batch = self.transfer_batch_to_gpu(batch, root_gpu)
args[0] = batch
# TPU data transfer
if self.use_tpu:
batch = self.transfer_batch_to_tpu(batch)
args[0] = batch
# CPU, TPU or gpu step
if test_mode:
output = model.test_step(*args)
else:
output = model.validation_step(*args)
return output