219 lines
8.1 KiB
Python
219 lines
8.1 KiB
Python
"""
|
|
Comet
|
|
-----
|
|
"""
|
|
|
|
from argparse import Namespace
|
|
from typing import Optional, Dict, Union, Any
|
|
|
|
try:
|
|
from comet_ml import Experiment as CometExperiment
|
|
from comet_ml import ExistingExperiment as CometExistingExperiment
|
|
from comet_ml import OfflineExperiment as CometOfflineExperiment
|
|
from comet_ml import BaseExperiment as CometBaseExperiment
|
|
try:
|
|
from comet_ml.api import API
|
|
except ImportError: # pragma: no-cover
|
|
# For more information, see: https://www.comet.ml/docs/python-sdk/releases/#release-300
|
|
from comet_ml.papi import API # pragma: no-cover
|
|
except ImportError: # pragma: no-cover
|
|
raise ImportError('You want to use `comet_ml` logger which is not installed yet,' # pragma: no-cover
|
|
' install it with `pip install comet-ml`.')
|
|
|
|
import torch
|
|
from torch import is_tensor
|
|
|
|
from pytorch_lightning import _logger as log
|
|
from pytorch_lightning.loggers.base import LightningLoggerBase, rank_zero_only
|
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
|
|
|
|
|
class CometLogger(LightningLoggerBase):
|
|
r"""
|
|
Log using `Comet.ml <https://www.comet.ml>`_. Install it with pip:
|
|
|
|
.. code-block:: bash
|
|
|
|
pip install comet-ml
|
|
|
|
Comet requires either an API Key (online mode) or a local directory path (offline mode).
|
|
|
|
**ONLINE MODE**
|
|
|
|
Example:
|
|
>>> import os
|
|
>>> from pytorch_lightning import Trainer
|
|
>>> from pytorch_lightning.loggers import CometLogger
|
|
>>> # arguments made to CometLogger are passed on to the comet_ml.Experiment class
|
|
>>> comet_logger = CometLogger(
|
|
... api_key=os.environ.get('COMET_API_KEY'),
|
|
... workspace=os.environ.get('COMET_WORKSPACE'), # Optional
|
|
... save_dir='.', # Optional
|
|
... project_name='default_project', # Optional
|
|
... rest_api_key=os.environ.get('COMET_REST_API_KEY'), # Optional
|
|
... experiment_name='default' # Optional
|
|
... )
|
|
>>> trainer = Trainer(logger=comet_logger)
|
|
|
|
**OFFLINE MODE**
|
|
|
|
Example:
|
|
>>> from pytorch_lightning.loggers import CometLogger
|
|
>>> # arguments made to CometLogger are passed on to the comet_ml.Experiment class
|
|
>>> comet_logger = CometLogger(
|
|
... save_dir='.',
|
|
... workspace=os.environ.get('COMET_WORKSPACE'), # Optional
|
|
... project_name='default_project', # Optional
|
|
... rest_api_key=os.environ.get('COMET_REST_API_KEY'), # Optional
|
|
... experiment_name='default' # Optional
|
|
... )
|
|
>>> trainer = Trainer(logger=comet_logger)
|
|
|
|
Args:
|
|
api_key: Required in online mode. API key, found on Comet.ml
|
|
save_dir: Required in offline mode. The path for the directory to save local comet logs
|
|
workspace: Optional. Name of workspace for this user
|
|
project_name: Optional. Send your experiment to a specific project.
|
|
Otherwise will be sent to Uncategorized Experiments.
|
|
If the project name does not already exist, Comet.ml will create a new project.
|
|
rest_api_key: Optional. Rest API key found in Comet.ml settings.
|
|
This is used to determine version number
|
|
experiment_name: Optional. String representing the name for this particular experiment on Comet.ml.
|
|
experiment_key: Optional. If set, restores from existing experiment.
|
|
"""
|
|
|
|
def __init__(self,
|
|
api_key: Optional[str] = None,
|
|
save_dir: Optional[str] = None,
|
|
workspace: Optional[str] = None,
|
|
project_name: Optional[str] = None,
|
|
rest_api_key: Optional[str] = None,
|
|
experiment_name: Optional[str] = None,
|
|
experiment_key: Optional[str] = None,
|
|
**kwargs):
|
|
|
|
super().__init__()
|
|
self._experiment = None
|
|
|
|
# Determine online or offline mode based on which arguments were passed to CometLogger
|
|
if api_key is not None:
|
|
self.mode = "online"
|
|
self.api_key = api_key
|
|
elif save_dir is not None:
|
|
self.mode = "offline"
|
|
self.save_dir = save_dir
|
|
else:
|
|
# If neither api_key nor save_dir are passed as arguments, raise an exception
|
|
raise MisconfigurationException("CometLogger requires either api_key or save_dir during initialization.")
|
|
|
|
log.info(f"CometLogger will be initialized in {self.mode} mode")
|
|
|
|
self.workspace = workspace
|
|
self.project_name = project_name
|
|
self.experiment_key = experiment_key
|
|
self._kwargs = kwargs
|
|
|
|
if rest_api_key is not None:
|
|
# Comet.ml rest API, used to determine version number
|
|
self.rest_api_key = rest_api_key
|
|
self.comet_api = API(self.rest_api_key)
|
|
else:
|
|
self.rest_api_key = None
|
|
self.comet_api = None
|
|
|
|
if experiment_name:
|
|
try:
|
|
self.name = experiment_name
|
|
except TypeError as e:
|
|
log.exception("Failed to set experiment name for comet.ml logger")
|
|
self._kwargs = kwargs
|
|
|
|
@property
|
|
def experiment(self) -> CometBaseExperiment:
|
|
r"""
|
|
Actual Comet object. To use Comet features in your
|
|
:class:`~pytorch_lightning.core.lightning.LightningModule` do the following.
|
|
|
|
Example::
|
|
|
|
self.logger.experiment.some_comet_function()
|
|
|
|
"""
|
|
if self._experiment is not None:
|
|
return self._experiment
|
|
|
|
if self.mode == "online":
|
|
if self.experiment_key is None:
|
|
self._experiment = CometExperiment(
|
|
api_key=self.api_key,
|
|
workspace=self.workspace,
|
|
project_name=self.project_name,
|
|
**self._kwargs
|
|
)
|
|
self.experiment_key = self._experiment.get_key()
|
|
else:
|
|
self._experiment = CometExistingExperiment(
|
|
api_key=self.api_key,
|
|
workspace=self.workspace,
|
|
project_name=self.project_name,
|
|
previous_experiment=self.experiment_key,
|
|
**self._kwargs
|
|
)
|
|
else:
|
|
self._experiment = CometOfflineExperiment(
|
|
offline_directory=self.save_dir,
|
|
workspace=self.workspace,
|
|
project_name=self.project_name,
|
|
**self._kwargs
|
|
)
|
|
|
|
return self._experiment
|
|
|
|
@rank_zero_only
|
|
def log_hyperparams(self, params: Union[Dict[str, Any], Namespace]) -> None:
|
|
params = self._convert_params(params)
|
|
params = self._flatten_dict(params)
|
|
self.experiment.log_parameters(params)
|
|
|
|
@rank_zero_only
|
|
def log_metrics(
|
|
self,
|
|
metrics: Dict[str, Union[torch.Tensor, float]],
|
|
step: Optional[int] = None
|
|
) -> None:
|
|
# Comet.ml expects metrics to be a dictionary of detached tensors on CPU
|
|
for key, val in metrics.items():
|
|
if is_tensor(val):
|
|
metrics[key] = val.cpu().detach()
|
|
|
|
self.experiment.log_metrics(metrics, step=step)
|
|
|
|
def reset_experiment(self):
|
|
self._experiment = None
|
|
|
|
@rank_zero_only
|
|
def finalize(self, status: str) -> None:
|
|
r"""
|
|
When calling ``self.experiment.end()``, that experiment won't log any more data to Comet.
|
|
That's why, if you need to log any more data, you need to create an ExistingCometExperiment.
|
|
For example, to log data when testing your model after training, because when training is
|
|
finalized :meth:`CometLogger.finalize` is called.
|
|
|
|
This happens automatically in the :meth:`~CometLogger.experiment` property, when
|
|
``self._experiment`` is set to ``None``, i.e. ``self.reset_experiment()``.
|
|
"""
|
|
self.experiment.end()
|
|
self.reset_experiment()
|
|
|
|
@property
|
|
def name(self) -> str:
|
|
return str(self.experiment.project_name)
|
|
|
|
@name.setter
|
|
def name(self, value: str) -> None:
|
|
self.experiment.set_name(value)
|
|
|
|
@property
|
|
def version(self) -> str:
|
|
return self.experiment.id
|