lightning/pl_examples/basic_examples/profiler_example.py

118 lines
4.1 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This script will generate 2 traces: one for `training_step` and one for `validation_step`. The traces can be
visualized in 2 ways:
* With Chrome:
1. Open Chrome and copy/paste this url: `chrome://tracing/`.
2. Once tracing opens, click on `Load` at the top-right and load one of the generated traces.
* With PyTorch Tensorboard Profiler (Instructions are here: https://github.com/pytorch/kineto/tree/master/tb_plugin)
1. pip install tensorboard torch-tb-profiler
2. tensorboard --logdir={FOLDER}
"""
import sys
import torch
import torchvision
import torchvision.models as models
import torchvision.transforms as T
from pl_examples import _DATASETS_PATH, cli_lightning_logo
from pytorch_lightning import LightningDataModule, LightningModule
from pytorch_lightning.profiler.pytorch import PyTorchProfiler
from pytorch_lightning.utilities.cli import LightningCLI
DEFAULT_CMD_LINE = (
"fit",
"--trainer.max_epochs=1",
"--trainer.limit_train_batches=15",
"--trainer.limit_val_batches=15",
"--trainer.profiler=pytorch",
"--trainer.accelerator=gpu",
f"--trainer.devices={int(torch.cuda.is_available())}",
)
class ModelToProfile(LightningModule):
def __init__(self, name: str = "resnet18", automatic_optimization: bool = True):
super().__init__()
self.model = getattr(models, name)(pretrained=True)
self.criterion = torch.nn.CrossEntropyLoss()
self.automatic_optimization = automatic_optimization
self.training_step = (
self.automatic_optimization_training_step
if automatic_optimization
else self.manual_optimization_training_step
)
def automatic_optimization_training_step(self, batch, batch_idx):
inputs, labels = batch
outputs = self.model(inputs)
loss = self.criterion(outputs, labels)
self.log("train_loss", loss)
return loss
def manual_optimization_training_step(self, batch, batch_idx):
opt = self.optimizers()
opt.zero_grad()
inputs, labels = batch
outputs = self.model(inputs)
loss = self.criterion(outputs, labels)
self.log("train_loss", loss)
self.manual_backward(loss)
opt.step()
def validation_step(self, batch, batch_idx):
inputs, labels = batch
outputs = self.model(inputs)
loss = self.criterion(outputs, labels)
self.log("val_loss", loss)
def predict_step(self, batch, batch_idx, dataloader_idx: int = None):
inputs = batch[0]
return self.model(inputs)
def configure_optimizers(self):
return torch.optim.SGD(self.parameters(), lr=0.001, momentum=0.9)
class CIFAR10DataModule(LightningDataModule):
transform = T.Compose([T.Resize(256), T.CenterCrop(224), T.ToTensor()])
def train_dataloader(self, *args, **kwargs):
trainset = torchvision.datasets.CIFAR10(
root=_DATASETS_PATH, train=True, download=True, transform=self.transform
)
return torch.utils.data.DataLoader(trainset, batch_size=2, shuffle=True, num_workers=0)
def val_dataloader(self, *args, **kwargs):
valset = torchvision.datasets.CIFAR10(root=_DATASETS_PATH, train=False, download=True, transform=self.transform)
return torch.utils.data.DataLoader(valset, batch_size=2, shuffle=True, num_workers=0)
def cli_main():
if len(sys.argv) == 1:
sys.argv += DEFAULT_CMD_LINE
LightningCLI(
ModelToProfile, CIFAR10DataModule, save_config_overwrite=True, trainer_defaults={"profiler": PyTorchProfiler()}
)
if __name__ == "__main__":
cli_lightning_logo()
cli_main()