lightning/pytorch_lightning/core/step_result.py

704 lines
22 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Result class for easier logging and epoch-wise reduction."""
import numbers
from copy import copy
from typing import Any, Callable, Dict, Iterable, List, MutableMapping, Optional, Sequence, Tuple, Union
import torch
from torch import Tensor
from torchmetrics import Metric
from pytorch_lightning.utilities.distributed import sync_ddp_if_available
class Result(Dict):
def __init__(self, minimize: Optional[Tensor] = None):
super().__init__()
if minimize is not None:
err = 'Minimize can only be used in training_step, training_step_end, training_epoch_end'
self._assert_grad_tensor_metric('minimize', minimize, err)
self.minimize = minimize
self['meta'] = {'_internal': {'_reduce_on_epoch': False, 'batch_sizes': []}}
def __getitem__(self, key: Union[str, Any]) -> Any:
try:
return super().__getitem__(key)
except KeyError:
return super().__getitem__(f'{key}_step')
def __getattr__(self, key: str) -> Any:
try:
if key == 'batch_log_metrics':
return self.get_batch_log_metrics()
elif key == 'batch_pbar_metrics':
return self.get_batch_pbar_metrics()
elif key == 'epoch_log_metrics':
return self.get_epoch_log_metrics()
elif key == 'epoch_pbar_metrics':
return self.get_epoch_pbar_metrics()
else:
return self[key]
except KeyError:
return None
def __setattr__(self, key: str, val: Union[Tensor, Any]):
# ensure tensors are detached
if isinstance(val, torch.Tensor) and key != 'minimize':
val = val.detach()
self[key] = val
def __getstate__(self):
return self
def __setstate__(self, d):
self.update(d)
def _assert_grad_tensor_metric(self, name: str, x: Union[torch.Tensor, Any], additional_err: str = ''):
if x is not None:
if not isinstance(x, Tensor):
raise TypeError(f'{name} must be a torch.Tensor')
m = f'{name} must have a computational graph.'
if additional_err:
m += f' {additional_err}'
assert x.grad_fn is not None, m
def log(
self,
name: str,
value: Any,
prog_bar: bool = False,
logger: bool = True,
on_step: bool = False,
on_epoch: bool = True,
reduce_fx: Callable = torch.mean,
tbptt_reduce_fx: Callable = torch.mean,
tbptt_pad_token: int = 0,
enable_graph: bool = False,
sync_dist: bool = False,
sync_dist_op: Union[Any, str] = 'mean',
sync_dist_group: Optional[Any] = None,
sync_fn: Callable = None,
dataloader_idx: Optional[int] = None,
device: torch.device = None,
):
# no metrics should be logged with graphs
if not enable_graph and isinstance(value, torch.Tensor):
value = value.detach()
# sync across workers when using distributed training
sync_fn = sync_fn or sync_ddp_if_available
if sync_dist and isinstance(value, (torch.Tensor, numbers.Number)):
is_dist_initialized = torch.distributed.is_available() and torch.distributed.is_initialized()
# TODO: Find a way to make the reduction only once, so we don't need to clone.
if is_dist_initialized and isinstance(value, torch.Tensor):
value = value.clone()
else:
value = torch.tensor(value, device=device, dtype=torch.float)
value = sync_fn(value, group=sync_dist_group, reduce_op=sync_dist_op)
if isinstance(value, torch.Tensor) and value.device.type == "xla":
value = value.cpu()
if 'meta' not in self:
self.__setitem__('meta', {})
# if user requests both step and epoch, then we split the metric in two automatically
# one will be logged per step. the other per epoch
was_forked = False
if on_step and on_epoch:
was_forked = True
# set step version
step_name = f'{name}_step'
self.__set_meta(
step_name,
value,
prog_bar,
logger,
on_step=True,
on_epoch=False,
reduce_fx=reduce_fx,
tbptt_reduce_fx=tbptt_reduce_fx,
tbptt_pad_token=tbptt_pad_token,
forked=False,
dataloader_idx=dataloader_idx,
)
self.__setitem__(step_name, value)
# set epoch version
epoch_name = f'{name}_epoch'
self.__set_meta(
epoch_name,
value,
prog_bar,
logger,
on_step=False,
on_epoch=True,
reduce_fx=reduce_fx,
tbptt_reduce_fx=tbptt_reduce_fx,
tbptt_pad_token=tbptt_pad_token,
forked=False,
dataloader_idx=dataloader_idx,
)
self.__setitem__(epoch_name, value)
# always log the original metric
self.__set_meta(
name,
value,
prog_bar,
logger,
on_step,
on_epoch,
reduce_fx,
tbptt_reduce_fx=tbptt_reduce_fx,
tbptt_pad_token=tbptt_pad_token,
forked=was_forked,
dataloader_idx=dataloader_idx,
)
# set the value
self.__setitem__(name, value)
def __set_meta(
self,
name: str,
value: Any,
prog_bar: bool,
logger: bool,
on_step: bool,
on_epoch: bool,
reduce_fx: Callable,
tbptt_pad_token: int,
tbptt_reduce_fx: Callable,
forked: bool,
dataloader_idx: Union[int, None],
):
# set the meta for the item
meta_value = value
meta = dict(
prog_bar=prog_bar,
logger=logger,
on_step=on_step,
on_epoch=on_epoch,
reduce_fx=reduce_fx,
value=meta_value,
tbptt_reduce_fx=tbptt_reduce_fx,
tbptt_pad_token=tbptt_pad_token,
forked=forked,
dataloader_idx=dataloader_idx,
)
self['meta'][name] = meta
# track whether any input requires reduction on epoch end
_internal = self['meta']['_internal']
_internal['_reduce_on_epoch'] = max(_internal['_reduce_on_epoch'], on_epoch)
def track_batch_size(self, batch):
batch_size = Result.extract_batch_size(batch)
Result.attach_batch_size(batch_size, self)
@staticmethod
def extract_batch_size(batch):
try:
batch_size = Result.unpack_batch_size(batch)
except RecursionError:
batch_size = 1
return batch_size
@staticmethod
def attach_batch_size(batch_size: Union[int, None], result: 'Result') -> None:
if batch_size is not None:
meta = result['meta']
meta['_internal']['batch_sizes'].append(batch_size)
def get_batch_sizes(self):
meta = self['meta']
return torch.tensor(meta['_internal']['batch_sizes'])
def _add_dataloader_idx(self, k: str, dataloader_idx: Union[int, None], add_dataloader_idx: bool) -> str:
if dataloader_idx is not None and add_dataloader_idx:
return f"{k}/dataloader_idx_{dataloader_idx}"
return k
def get_batch_log_metrics(self, include_forked_originals=True, add_dataloader_idx=False) -> dict:
"""
Gets the metrics to log at the end of the batch step
"""
result = {}
meta = self['meta']
for k, options in meta.items():
if k == '_internal':
continue
if options['forked'] and not include_forked_originals:
continue
dl_key = self._add_dataloader_idx(k, options["dataloader_idx"], add_dataloader_idx)
if options['logger'] and options['on_step']:
if isinstance(self[k], Metric) and self[k]._forward_cache is not None:
result[dl_key] = self[k]._forward_cache.detach()
else:
result[dl_key] = self[k]
return result
def get_epoch_log_metrics(self, add_dataloader_idx=False) -> dict:
"""
Gets the metrics to log at the end of epoch
"""
result = {}
meta = self['meta']
for k, options in meta.items():
if k == '_internal':
continue
if options['forked']:
continue
dl_key = self._add_dataloader_idx(k, options["dataloader_idx"], add_dataloader_idx)
if options['logger'] and options['on_epoch']:
if isinstance(self[k], Metric):
result[dl_key] = self[k].compute().detach()
self[k].reset()
else:
result[dl_key] = self[k]
if k in self and not options['on_epoch'] and isinstance(self[k], Metric):
# reset metric anyway so state does not accumulate
# NOTE: we must compute before reseting just in case the computed value is needed
# later (i.e. if the step metric gets visited first, and then the epoch metric)
self[k].compute()
self[k].reset()
return result
def get_epoch_pbar_metrics(self, add_dataloader_idx=False):
"""
Gets the metrics to log at the end of epoch
"""
result = {}
meta = self['meta']
for k, options in meta.items():
if k == '_internal':
continue
if options['forked']:
continue
dl_key = self._add_dataloader_idx(k, options["dataloader_idx"], add_dataloader_idx)
if options['prog_bar'] and options['on_epoch']:
if isinstance(self[k], Metric):
result[dl_key] = self[k].compute().detach()
self[k].reset()
else:
result[dl_key] = self[k]
if k in self and not options['on_epoch'] and isinstance(self[k], Metric):
# reset metric anyway so state does not accumulate
# NOTE: we must compute before reseting just in case the computed value is needed
# later (i.e. if the step metric gets visited first, and then the epoch metric)
self[k].compute()
self[k].reset()
return result
def get_forked_metrics(self, add_dataloader_idx=False):
"""
Gets the metrics to log at the end of epoch
"""
result = {}
meta = self['meta']
for k, options in meta.items():
if k == '_internal':
continue
dl_key = self._add_dataloader_idx(k, options["dataloader_idx"], add_dataloader_idx)
if options['forked']:
if isinstance(self[k], Metric):
result[dl_key] = self[k].compute().detach()
self[k].reset()
else:
result[dl_key] = self[k]
return result
def get_batch_pbar_metrics(self, include_forked_originals=True, add_dataloader_idx=False):
"""
Gets the metrics to log at the end of the batch step
"""
result = {}
meta = self['meta']
for k, options in meta.items():
if k == '_internal':
continue
if options['forked'] and not include_forked_originals:
continue
dl_key = self._add_dataloader_idx(k, options["dataloader_idx"], add_dataloader_idx)
if options['prog_bar'] and options['on_step']:
if isinstance(self[k], Metric) and self[k]._forward_cache is not None:
result[dl_key] = self[k]._forward_cache
else:
result[dl_key] = self[k]
return result
def detach(self) -> 'Result':
for k, v in self.items():
if isinstance(v, torch.Tensor):
self.__setitem__(k, v.detach())
return self
def to(self, *args, **kwargs) -> 'Result':
"""Move all self attributes to the given device."""
for k, v in self.items():
if isinstance(v, torch.Tensor):
self.__setitem__(k, v.to(*args, **kwargs))
return self
def cpu(self) -> 'Result':
"""Move all self attributes to CPU."""
return self.to(torch.device("cpu"))
def __repr__(self):
self_copy = self.copy()
if 'meta' in self_copy:
del self_copy['meta']
return str(self_copy)
def __str__(self):
copy = self.copy()
del copy['meta']
return str(copy)
def __copy__(self):
newone = type(self)()
for k, v in self.items():
if isinstance(v, torch.Tensor):
v = v.detach()
newone[k] = copy(v)
return newone
@staticmethod
def unpack_batch_size(sample):
"""
Recursively unpack sample to find a torch.Tensor.
returns len(tensor) when found, or 1 when it hits an empty or non iterable.
"""
if isinstance(sample, torch.Tensor):
size = sample.size(0)
elif isinstance(sample, str):
return len(sample)
elif isinstance(sample, dict):
sample = next(iter(sample.values()), 1)
size = Result.unpack_batch_size(sample)
elif isinstance(sample, Iterable):
sample = next(iter(sample), 1)
size = Result.unpack_batch_size(sample)
else:
size = 1
return size
@classmethod
def gather(cls, outputs):
meta = outputs[0].get('meta')
result = cls()
result = recursive_gather(outputs, result)
recursive_stack(result)
if meta:
result['meta'] = meta
return result
@classmethod
def padded_gather(cls, outputs):
meta = outputs[0].get('meta')
result = cls()
result = recursive_gather(outputs, result)
# find the padding used for other values
default_padding_idx = 0
for name, value in result.items():
if (
name != 'minimize' and isinstance(value, list) and len(value) > 0
and isinstance(value[0], torch.Tensor)
):
default_padding_idx = meta[name]['tbptt_pad_token']
break
# pad across each key individually
for name, value in result.items():
if (isinstance(value, list) and len(value) > 0 and isinstance(value[0], torch.Tensor)):
padding_key = default_padding_idx if name == 'minimize' else meta[name]['tbptt_pad_token']
padded = torch.nn.utils.rnn.pad_sequence(value, batch_first=True, padding_value=padding_key)
result[name] = padded
# also update the result
if meta and name != "minimize":
meta[name]['value'] = padded
if meta:
result['meta'] = meta
return result
@classmethod
def reduce_on_epoch_end(cls, outputs):
# get the batch sizes for all outputs
batch_sizes = []
meta = {}
for x in outputs:
batch_sizes.append(x.get_batch_sizes())
meta.update(x['meta'])
batch_sizes = torch.stack(batch_sizes).view(-1)
result = cls()
result = recursive_gather(outputs, result)
recursive_stack(result)
for k, option in meta.items():
if k == '_internal' or isinstance(result[k], Metric):
continue
# for forked metrics don't reduce, just take the last val
if option['forked']:
result[k] = choose_last(result[k])
continue
if option['on_epoch']:
fx = option['reduce_fx']
if fx == torch.mean:
if isinstance(result[k], list):
result[k] = torch.tensor(result[k]).float()
try:
reduced_val = weighted_mean(result[k], batch_sizes)
# todo: specify the expected Exceptions to come
except Exception:
reduced_val = torch.mean(result[k])
else:
reduced_val = fx(result[k])
result[k] = reduced_val
else:
del result[k]
result['meta'] = meta
return result
@classmethod
def reduce_across_time(cls, time_outputs):
# auto-reduce across time for tbptt
meta = time_outputs[0]['meta']
# in 1.0 the results have 'extra'. Once we deprecate 0.10.0 we may not need this
if 'extra' in time_outputs[0]:
[x.pop('extra', None) for x in time_outputs]
result = cls()
result = recursive_gather(time_outputs, result)
recursive_stack(result)
for k, value in result.items():
if k in ['meta', 'extra'] or isinstance(value, Metric):
continue
# pick the reduce fx
tbptt_reduce_fx = torch.mean if k == "minimize" else meta[k]['tbptt_reduce_fx']
if isinstance(value, list):
value = torch.tensor(value)
if isinstance(value, dict):
# TODO: recursive reduce:
_recursive_fx_apply(value, tbptt_reduce_fx)
else:
result[k] = tbptt_reduce_fx(value.float())
result['meta'] = meta
return result
def dp_reduce(self):
for k, value in self.items():
if k == 'meta' or isinstance(value, Metric):
continue
if isinstance(value, list):
value = torch.tensor(value)
self[k] = value.mean(dim=-1)
@property
def should_reduce_on_epoch_end(self) -> bool:
return self['meta']['_internal']['_reduce_on_epoch']
def rename_keys(self, map_dict: dict):
"""
Maps key values to the target values. Useful when renaming variables in mass.
Args:
map_dict:
"""
meta = self.meta
for source, dest in map_dict.items():
# map the main keys
self[dest] = self[source]
del self[source]
# map meta
meta[dest] = meta[source]
del meta[source]
def get_non_metrics_keys(self):
"""
This function is used to filter metric keys for which the value isn't a Metric
"""
return [k for k, v in self.items() if not isinstance(v, Metric)]
def choose_last(x):
if isinstance(x, (torch.Tensor, list)):
return x[-1]
if isinstance(x, dict):
for k, v in x.items():
x[k] = x[k][-1]
def recursive_gather(outputs: Sequence[dict], result: Optional[MutableMapping] = None) -> Optional[MutableMapping]:
for out in outputs:
if 'meta' in out:
del out['meta']
for k, v in out.items():
# support manual opt where the user does not return a minimize key
if k == 'minimize' and v is None:
continue
if isinstance(v, dict):
in_d = result.get(k, {})
v = recursive_gather([v], in_d)
result[k] = v
else:
if isinstance(v, Metric):
# if v is a metric, just keep one of them,
# don't keep on adding a list of them
result[k] = v
else:
if k not in result:
result[k] = []
result[k].append(v)
return result
def recursive_stack(result: MutableMapping):
for k, v in result.items():
if isinstance(v, dict):
recursive_stack(v)
result[k] = collate_tensors(v)
def _recursive_fx_apply(input: dict, fx):
for k, v in input.items():
if isinstance(v, list):
v = torch.tensor(v)
if isinstance(v, torch.Tensor):
v = fx(v.float())
input[k] = v
else:
_recursive_fx_apply(v, fx)
def collate_tensors(items: Union[List, Tuple]) -> Union[Tensor, List, Tuple]:
if not items or not isinstance(items, (list, tuple)) or any(not isinstance(item, Tensor) for item in items):
# items is not a sequence, empty, or contains non-tensors
return items
if all(item.ndim == 0 for item in items):
# all tensors are scalars, we need to stack
return torch.stack(items)
if all(item.ndim >= 1 and item.shape[1:] == items[0].shape[1:] for item in items):
# we can concatenate along the first dimension
return torch.cat(items)
return items
def weighted_mean(result, weights):
if isinstance(result, dict):
_process_dataloader_aggregated_steps(result, weights)
else:
if isinstance(result, list):
result = torch.tensor(result)
weights = weights.to(result.device)[:result.size(0)]
numerator = torch.dot(result.float(), weights.transpose(-1, 0).float())
result = numerator / weights.sum().float()
return result
def _process_dataloader_aggregated_steps(result, weights):
internal_keys = {'meta'}
moved = False
for k, v in result.items():
if k in internal_keys:
continue
# make sure v is a tensor
if not isinstance(v, torch.Tensor):
v = torch.tensor(v)
# move to memory only once
if not moved:
weights = weights.to(v.device)
moved = True
# move weights to same device as value to reduce
weights_t = weights[:v.size(0)]
# weighted mean
numerator = torch.dot(v.float(), weights_t.transpose(-1, 0).float())
v = numerator / weights.sum().float()
result[k] = v