lightning/tests/tests_fabric/strategies/test_deepspeed.py

324 lines
13 KiB
Python

# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
from re import escape
from unittest import mock
from unittest.mock import ANY, Mock
import pytest
import torch
from tests_fabric.helpers.runif import RunIf
from torch.optim import Optimizer
from lightning.fabric.accelerators import CPUAccelerator
from lightning.fabric.strategies import DeepSpeedStrategy
@pytest.fixture
def deepspeed_config():
return {
"optimizer": {"type": "SGD", "params": {"lr": 3e-5}},
"scheduler": {
"type": "WarmupLR",
"params": {"last_batch_iteration": -1, "warmup_min_lr": 0, "warmup_max_lr": 3e-5, "warmup_num_steps": 100},
},
}
@pytest.fixture
def deepspeed_zero_config(deepspeed_config):
return {**deepspeed_config, "zero_allow_untested_optimizer": True, "zero_optimization": {"stage": 2}}
@RunIf(deepspeed=True)
def test_deepspeed_only_compatible_with_cuda():
"""Test that the DeepSpeed strategy raises an exception if an invalid accelerator is used."""
strategy = DeepSpeedStrategy(accelerator=CPUAccelerator())
with pytest.raises(RuntimeError, match="The DeepSpeed strategy is only supported on CUDA GPUs"):
strategy.setup_environment()
@RunIf(deepspeed=True)
def test_deepspeed_with_invalid_config_path():
"""Test to ensure if we pass an invalid config path we throw an exception."""
with pytest.raises(
FileNotFoundError, match="You passed in a path to a DeepSpeed config but the path does not exist"
):
DeepSpeedStrategy(config="invalid_path.json")
@RunIf(deepspeed=True)
def test_deepspeed_with_env_path(tmpdir, monkeypatch, deepspeed_config):
"""Test to ensure if we pass an env variable, we load the config from the path."""
config_path = os.path.join(tmpdir, "temp.json")
with open(config_path, "w") as f:
f.write(json.dumps(deepspeed_config))
monkeypatch.setenv("PL_DEEPSPEED_CONFIG_PATH", config_path)
strategy = DeepSpeedStrategy()
assert strategy.config == deepspeed_config
@RunIf(deepspeed=True)
def test_deepspeed_defaults():
"""Ensure that defaults are correctly set as a config for DeepSpeed if no arguments are passed."""
strategy = DeepSpeedStrategy()
assert strategy.config is not None
assert isinstance(strategy.config["zero_optimization"], dict)
assert strategy._backward_sync_control is None
@RunIf(deepspeed=True)
def test_deepspeed_custom_activation_checkpointing_params(tmpdir):
"""Ensure if we modify the activation checkpointing parameters, the deepspeed config contains these changes."""
ds = DeepSpeedStrategy(
partition_activations=True,
cpu_checkpointing=True,
contiguous_memory_optimization=True,
synchronize_checkpoint_boundary=True,
)
checkpoint_config = ds.config["activation_checkpointing"]
assert checkpoint_config["partition_activations"]
assert checkpoint_config["cpu_checkpointing"]
assert checkpoint_config["contiguous_memory_optimization"]
assert checkpoint_config["synchronize_checkpoint_boundary"]
@RunIf(deepspeed=True)
def test_deepspeed_config_zero_offload(deepspeed_zero_config):
"""Test the various ways optimizer-offloading can be configured."""
# default config
strategy = DeepSpeedStrategy(config=deepspeed_zero_config)
assert "offload_optimizer" not in strategy.config["zero_optimization"]
# default config
strategy = DeepSpeedStrategy()
assert "offload_optimizer" not in strategy.config["zero_optimization"]
# default config with `offload_optimizer` argument override
strategy = DeepSpeedStrategy(offload_optimizer=True)
assert strategy.config["zero_optimization"]["offload_optimizer"] == {
"buffer_count": 4,
"device": "cpu",
"nvme_path": "/local_nvme",
"pin_memory": False,
}
# externally configured through config
deepspeed_zero_config["zero_optimization"]["offload_optimizer"] = False
strategy = DeepSpeedStrategy(config=deepspeed_zero_config)
assert strategy.config["zero_optimization"]["offload_optimizer"] is False
@RunIf(deepspeed=True)
@mock.patch("deepspeed.initialize")
def test_deepspeed_setup_module(init_mock):
"""Test that the DeepSpeed strategy can set up the model for inference (no optimizer required)."""
model = Mock()
model.parameters.return_value = []
strategy = DeepSpeedStrategy()
strategy.parallel_devices = [torch.device("cuda", 1)]
init_mock.return_value = [Mock()] * 4 # mock to make tuple unpacking work
strategy.setup_module(model)
init_mock.assert_called_with(
args=ANY,
config=strategy.config,
model=model,
model_parameters=ANY,
optimizer=None,
dist_init_required=False,
)
@RunIf(deepspeed=True)
def test_deepspeed_requires_joint_setup():
"""Test that the DeepSpeed strategy does not support setting up model and optimizer independently."""
strategy = DeepSpeedStrategy()
with pytest.raises(
NotImplementedError, match=escape("does not support setting up the module and optimizer(s) independently")
):
strategy.setup_optimizer(Mock())
@RunIf(deepspeed=True)
def test_deepspeed_save_checkpoint_storage_options(tmp_path):
"""Test that the DeepSpeed strategy does not accept storage options for saving checkpoints."""
strategy = DeepSpeedStrategy()
with pytest.raises(TypeError, match=escape("DeepSpeedStrategy.save_checkpoint(..., storage_options=...)` is not")):
strategy.save_checkpoint(path=tmp_path, state=Mock(), storage_options=Mock())
@RunIf(deepspeed=True)
def test_deepspeed_save_checkpoint_one_deepspeed_engine_required(tmp_path):
"""Test that the DeepSpeed strategy can only save one DeepSpeedEngine per checkpoint."""
from deepspeed import DeepSpeedEngine
strategy = DeepSpeedStrategy()
# missing DeepSpeedEngine
with pytest.raises(ValueError, match="Could not find a DeepSpeed model in the provided checkpoint state."):
strategy.save_checkpoint(path=tmp_path, state={})
with pytest.raises(ValueError, match="Could not find a DeepSpeed model in the provided checkpoint state."):
strategy.save_checkpoint(path=tmp_path, state={"model": torch.nn.Linear(3, 3)})
# multiple DeepSpeedEngine
model1 = Mock(spec=torch.nn.Module)
model1.modules.return_value = [Mock(spec=DeepSpeedEngine)]
model2 = Mock(spec=torch.nn.Module)
model2.modules.return_value = [Mock(spec=DeepSpeedEngine)]
with pytest.raises(ValueError, match="Found multiple DeepSpeed engine modules in the given state."):
strategy.save_checkpoint(path=tmp_path, state={"model1": model1, "model2": model2})
@RunIf(deepspeed=True)
def test_deepspeed_save_checkpoint_client_state_separation(tmp_path):
"""Test that the DeepSpeed engine and optimizer get separated from the client state."""
from deepspeed import DeepSpeedEngine
strategy = DeepSpeedStrategy()
# Model only
model = Mock(spec=DeepSpeedEngine, optimizer=None)
model.modules.return_value = [model]
strategy.save_checkpoint(path=tmp_path, state={"model": model, "test": "data"})
# the client_state should not contain any deepspeed engine or deepspeed optimizer
model.save_checkpoint.assert_called_with(tmp_path, client_state={"test": "data"}, tag="checkpoint")
# Model and optimizer
optimizer = Mock()
model = Mock(spec=DeepSpeedEngine, optimizer=optimizer)
model.modules.return_value = [model]
strategy.save_checkpoint(path=tmp_path, state={"model": model, "optimizer": optimizer, "test": "data"})
# the client_state should not contain any deepspeed engine or deepspeed optimizer
model.save_checkpoint.assert_called_with(tmp_path, client_state={"test": "data"}, tag="checkpoint")
@RunIf(deepspeed=True)
def test_deepspeed_save_checkpoint_warn_colliding_keys(tmp_path):
"""Test that the strategy warns if there are keys in the user dict that collide internally with DeepSpeed."""
from deepspeed import DeepSpeedEngine
strategy = DeepSpeedStrategy()
optimizer = Mock()
model = Mock(spec=DeepSpeedEngine, optimizer=optimizer)
model.modules.return_value = [model]
# `mp_world_size` is an internal key
with pytest.warns(UserWarning, match="Your state has keys that collide with DeepSpeed's internal"):
strategy.save_checkpoint(path=tmp_path, state={"model": model, "optimizer": optimizer, "mp_world_size": 2})
@RunIf(deepspeed=True)
def test_deepspeed_load_checkpoint_no_state(tmp_path):
"""Test that DeepSpeed can't load the full state without access to a model instance from the user."""
strategy = DeepSpeedStrategy()
with pytest.raises(ValueError, match=escape("Got DeepSpeedStrategy.load_checkpoint(..., state=None")):
strategy.load_checkpoint(path=tmp_path, state=None)
with pytest.raises(ValueError, match=escape("Got DeepSpeedStrategy.load_checkpoint(..., state={})")):
strategy.load_checkpoint(path=tmp_path, state={})
@RunIf(deepspeed=True)
def test_deepspeed_load_checkpoint_one_deepspeed_engine_required(tmp_path):
"""Test that the DeepSpeed strategy can only load one DeepSpeedEngine per checkpoint."""
from deepspeed import DeepSpeedEngine
strategy = DeepSpeedStrategy()
# missing DeepSpeedEngine
with pytest.raises(ValueError, match="Could not find a DeepSpeed model in the provided checkpoint state."):
strategy.load_checkpoint(path=tmp_path, state={"other": "data"})
with pytest.raises(ValueError, match="Could not find a DeepSpeed model in the provided checkpoint state."):
strategy.load_checkpoint(path=tmp_path, state={"model": torch.nn.Linear(3, 3)})
# multiple DeepSpeedEngine
model1 = Mock(spec=torch.nn.Module)
model1.modules.return_value = [Mock(spec=DeepSpeedEngine)]
model2 = Mock(spec=torch.nn.Module)
model2.modules.return_value = [Mock(spec=DeepSpeedEngine)]
with pytest.raises(ValueError, match="Found multiple DeepSpeed engine modules in the given state."):
strategy.load_checkpoint(path=tmp_path, state={"model1": model1, "model2": model2})
@RunIf(deepspeed=True)
def test_deepspeed_load_checkpoint_client_state_missing(tmp_path):
"""Test that the DeepSpeed strategy raises a custom error when client state couldn't be loaded by DeepSpeed."""
from deepspeed import DeepSpeedEngine
strategy = DeepSpeedStrategy()
optimizer = Mock()
model = Mock(spec=DeepSpeedEngine, optimizer=optimizer)
model.modules.return_value = [model]
# If the DeepSpeed engine fails to load the checkpoint file (e.g., file not found), it prints a warning and
# returns None from its function call
model.load_checkpoint.return_value = [None, None]
# Check for our custom user error
with pytest.raises(RuntimeError, match="DeepSpeed was unable to load the checkpoint"):
strategy.load_checkpoint(path=tmp_path, state={"model": model, "optimizer": optimizer, "test": "data"})
@RunIf(deepspeed=True)
def test_deepspeed_load_checkpoint_state_updated_with_client_state(tmp_path):
"""Test that the DeepSpeed strategy properly updates the state variables and returns additional metadata."""
from deepspeed import DeepSpeedEngine
strategy = DeepSpeedStrategy()
optimizer = Mock()
model = Mock(spec=DeepSpeedEngine, optimizer=optimizer)
model.modules.return_value = [model]
# the client state contains the additional user data that was proveded when saving, plus some deepspeed metadata
loaded_client_state = {"user_data": {"iteration": 5}, "deepspeed_metadata": "data"}
model.load_checkpoint.return_value = [None, loaded_client_state]
state = {"model": model, "user_data": {"iteration": 0}}
metadata = strategy.load_checkpoint(path=tmp_path, state=state)
# the user's state gets updated with the loaded value
assert state == {"model": model, "user_data": {"iteration": 5}}
# additional metadata gets separated from client state
assert metadata == {"deepspeed_metadata": "data"}
@RunIf(deepspeed=True)
@pytest.mark.parametrize("optimzer_state_requested", [True, False])
def test_deepspeed_load_checkpoint_optimzer_state_requested(optimzer_state_requested, tmp_path):
"""Test that the DeepSpeed strategy loads the optimizer state only when requested."""
from deepspeed import DeepSpeedEngine
strategy = DeepSpeedStrategy()
optimizer = Mock(spec=Optimizer)
model = Mock(spec=DeepSpeedEngine, optimizer=optimizer)
model.modules.return_value = [model]
# required, otherwise mock cannot be unpacked
model.load_checkpoint.return_value = [None, {}]
state = {"model": model}
if optimzer_state_requested:
state["optimizer"] = optimizer
strategy.load_checkpoint(path=tmp_path, state=state)
model.load_checkpoint.assert_called_with(
tmp_path,
tag="checkpoint",
load_optimizer_states=optimzer_state_requested,
load_lr_scheduler_states=False,
load_module_strict=True,
)