132 lines
3.5 KiB
ReStructuredText
132 lines
3.5 KiB
ReStructuredText
:orphan:
|
|
|
|
#####################
|
|
Train a model (basic)
|
|
#####################
|
|
**Audience**: Users who need to train a model without coding their own training loops.
|
|
|
|
----
|
|
|
|
***********
|
|
Add imports
|
|
***********
|
|
Add the relevant imports at the top of the file
|
|
|
|
.. code:: python
|
|
|
|
import os
|
|
import torch
|
|
from torch import nn
|
|
import torch.nn.functional as F
|
|
from torchvision import transforms
|
|
from torchvision.datasets import MNIST
|
|
from torch.utils.data import DataLoader
|
|
import pytorch_lightning as pl
|
|
|
|
----
|
|
|
|
*****************************
|
|
Define the PyTorch nn.Modules
|
|
*****************************
|
|
|
|
.. code:: python
|
|
|
|
class Encoder(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.l1 = nn.Sequential(nn.Linear(28 * 28, 64), nn.ReLU(), nn.Linear(64, 3))
|
|
|
|
def forward(self, x):
|
|
return self.l1(x)
|
|
|
|
|
|
class Decoder(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.l1 = nn.Sequential(nn.Linear(3, 64), nn.ReLU(), nn.Linear(64, 28 * 28))
|
|
|
|
def forward(self, x):
|
|
return self.l1(x)
|
|
|
|
----
|
|
|
|
************************
|
|
Define a LightningModule
|
|
************************
|
|
The LightningModule is the full **recipe** that defines how your nn.Modules interact.
|
|
|
|
- The **training_step** defines how the *nn.Modules* interact together.
|
|
- In the **configure_optimizers** define the optimizer(s) for your models.
|
|
|
|
.. code:: python
|
|
|
|
class LitAutoEncoder(pl.LightningModule):
|
|
def __init__(self, encoder, decoder):
|
|
super().__init__()
|
|
self.encoder = encoder
|
|
self.decoder = decoder
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
# training_step defines the train loop.
|
|
x, y = batch
|
|
x = x.view(x.size(0), -1)
|
|
z = self.encoder(x)
|
|
x_hat = self.decoder(z)
|
|
loss = F.mse_loss(x_hat, x)
|
|
return loss
|
|
|
|
def configure_optimizers(self):
|
|
optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)
|
|
return optimizer
|
|
|
|
----
|
|
|
|
***************************
|
|
Define the training dataset
|
|
***************************
|
|
Define a PyTorch :class:`~torch.utils.data.DataLoader` which contains your training dataset.
|
|
|
|
.. code-block:: python
|
|
|
|
dataset = MNIST(os.getcwd(), download=True, transform=transforms.ToTensor())
|
|
train_loader = DataLoader(dataset)
|
|
|
|
----
|
|
|
|
***************
|
|
Train the model
|
|
***************
|
|
To train the model use the Lightning :doc:`Trainer <../common/trainer>` which handles all the engineering and abstracts away all the complexity needed for scale.
|
|
|
|
.. code-block:: python
|
|
|
|
# model
|
|
autoencoder = LitAutoEncoder(Encoder(), Decoder())
|
|
|
|
# train model
|
|
trainer = pl.Trainer()
|
|
trainer.fit(model=autoencoder, train_dataloaders=train_loader)
|
|
|
|
----
|
|
|
|
***************************
|
|
Eliminate the training loop
|
|
***************************
|
|
Under the hood, the Lightning Trainer runs the following training loop on your behalf
|
|
|
|
.. code:: python
|
|
|
|
autoencoder = LitAutoEncoder(Encoder(), Decoder())
|
|
optimizer = autoencoder.configure_optimizers()
|
|
|
|
for batch_idx, batch in enumerate(train_loader):
|
|
loss = autoencoder.training_step(batch, batch_idx)
|
|
|
|
loss.backward()
|
|
optimizer.step()
|
|
optimizer.zero_grad()
|
|
|
|
The power of Lightning comes when the training loop gets complicated as you add validation/test splits, schedulers, distributed training and all the latest SOTA techniques.
|
|
|
|
With Lightning, you can add mix all these techniques together without needing to rewrite a new loop every time.
|