lightning/pytorch_lightning/root_module/model_saving.py

180 lines
5.3 KiB
Python

import torch
import os
import re
import pdb
from pytorch_lightning.pt_overrides.override_data_parallel import LightningDataParallel
class ModelIO(object):
def load_model_specific(self, checkpoint):
"""
Do something with the checkpoint
:param checkpoint:
:return:
"""
raise NotImplementedError
def get_save_dict(self):
"""
Return specific things for the model
:return:
"""
raise NotImplementedError
class TrainerIO(object):
# --------------------
# MODEL SAVE CHECKPOINT
# --------------------
def save_checkpoint(self, filepath):
checkpoint = self.dump_checkpoint()
# do the actual save
torch.save(checkpoint, filepath)
def dump_checkpoint(self):
checkpoint = {
'epoch': self.current_epoch,
'checkpoint_callback_best': self.checkpoint_callback.best,
'early_stop_callback_wait': self.early_stop_callback.wait,
'early_stop_callback_patience': self.early_stop_callback.patience,
'global_step': self.global_step
}
optimizer_states = []
for i, optimizer in enumerate(self.optimizers):
optimizer_states.append(optimizer.state_dict())
checkpoint['optimizer_states'] = optimizer_states
# request what to save from the model
model = self.model.module if type(self.model) is LightningDataParallel else self.model
checkpoint_dict = model.get_save_dict()
# merge trainer and model saving items
checkpoint.update(checkpoint_dict)
return checkpoint
# --------------------
# HPC IO
# --------------------
def enable_auto_hpc_walltime_manager(self):
if self.cluster is None:
return
# allow test tube to handle model check pointing automatically
self.cluster.set_checkpoint_save_function(
self.hpc_save,
kwargs={
'folderpath': self.checkpoint_callback.filepath,
'experiment': self.experiment
}
)
self.cluster.set_checkpoint_load_function(
self.hpc_load,
kwargs={
'folderpath': self.checkpoint_callback.filepath,
'on_gpu': self.on_gpu
}
)
def restore_training_state(self, checkpoint):
"""
Restore trainer state.
Model will get its change to update
:param checkpoint:
:return:
"""
self.checkpoint_callback.best = checkpoint['checkpoint_callback_best']
self.early_stop_callback.wait = checkpoint['early_stop_callback_wait']
self.early_stop_callback.patience = checkpoint['early_stop_callback_patience']
self.global_step = checkpoint['global_step']
self.current_epoch = checkpoint['epoch']
# restore the optimizers
optimizer_states = checkpoint['optimizer_states']
for optimizer, opt_state in zip(self.optimizers, optimizer_states):
optimizer.load_state_dict(opt_state)
# ----------------------------------
# PRIVATE OPS
# ----------------------------------
def hpc_save(self, folderpath, experiment):
# make sure the checkpoint folder exists
os.makedirs(folderpath, exist_ok=True)
# save exp to make sure we get all the metrics
experiment.save()
ckpt_number = self.max_ckpt_in_folder(folderpath) + 1
if not os.path.exists(folderpath):
os.makedirs(folderpath, exist_ok=True)
filepath = '{}/hpc_ckpt_{}.ckpt'.format(folderpath, ckpt_number)
# request what to save from the model
checkpoint_dict = self.dump_checkpoint()
# do the actual save
torch.save(checkpoint_dict, filepath)
def hpc_load(self, folderpath, on_gpu):
filepath = '{}/hpc_ckpt_{}.ckpt'.format(folderpath, self.max_ckpt_in_folder(folderpath))
if on_gpu:
checkpoint = torch.load(filepath)
else:
checkpoint = torch.load(filepath, map_location=lambda storage, loc: storage)
# load training state
self.restore_training_state(checkpoint)
# load model state
model = self.model.module if type(self.model) is LightningDataParallel else self.model
model.load_model_specific(checkpoint)
def max_ckpt_in_folder(self, path):
files = os.listdir(path)
files = [x for x in files if 'ckpt_' in x]
if len(files) == 0:
return 0
ckpt_vs = []
for name in files:
name = name.split('ckpt_')[-1]
name = re.sub('[^0-9]', '', name)
ckpt_vs.append(int(name))
return max(ckpt_vs)
def load_hparams_from_tags_csv(tags_csv):
from argparse import Namespace
import pandas as pd
tags_df = pd.read_csv(tags_csv)
dic = tags_df.to_dict(orient='records')
ns_dict = {row['key']: convert(row['value']) for row in dic}
ns = Namespace(**ns_dict)
return ns
def convert(val):
constructors = [int, float, str]
if type(val) is str:
if val.lower() == 'true':
return True
if val.lower() == 'false':
return False
for c in constructors:
try:
return c(val)
except ValueError:
pass
return val