569 lines
19 KiB
Python
569 lines
19 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import glob
|
|
import logging as log
|
|
import os
|
|
import pickle
|
|
from copy import deepcopy
|
|
|
|
import cloudpickle
|
|
import pytest
|
|
import torch
|
|
|
|
import tests.helpers.pipelines as tpipes
|
|
import tests.helpers.utils as tutils
|
|
from pytorch_lightning import Callback, Trainer
|
|
from pytorch_lightning.callbacks import ModelCheckpoint
|
|
from pytorch_lightning.trainer.states import RunningStage, TrainerState
|
|
from tests.base import EvalModelTemplate, GenericEvalModelTemplate
|
|
from tests.helpers import BoringModel
|
|
|
|
|
|
class ModelTrainerPropertyParity(Callback):
|
|
|
|
def _check_properties(self, trainer, pl_module):
|
|
assert trainer.global_step == pl_module.global_step
|
|
assert trainer.current_epoch == pl_module.current_epoch
|
|
|
|
def on_train_start(self, trainer, pl_module):
|
|
self._check_properties(trainer, pl_module)
|
|
|
|
def on_train_batch_start(self, trainer, pl_module, *args, **kwargs):
|
|
self._check_properties(trainer, pl_module)
|
|
|
|
def on_train_batch_end(self, trainer, pl_module, *args, **kwargs):
|
|
self._check_properties(trainer, pl_module)
|
|
|
|
def on_epoch_end(self, trainer, pl_module):
|
|
self._check_properties(trainer, pl_module)
|
|
|
|
def on_train_end(self, trainer, pl_module):
|
|
self._check_properties(trainer, pl_module)
|
|
|
|
|
|
def test_model_properties_resume_from_checkpoint(tmpdir):
|
|
""" Test that properties like `current_epoch` and `global_step`
|
|
in model and trainer are always the same. """
|
|
model = EvalModelTemplate()
|
|
checkpoint_callback = ModelCheckpoint(dirpath=tmpdir, monitor="early_stop_on", save_last=True)
|
|
trainer_args = dict(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
logger=False,
|
|
callbacks=[checkpoint_callback, ModelTrainerPropertyParity()], # this performs the assertions
|
|
)
|
|
trainer = Trainer(**trainer_args)
|
|
trainer.fit(model)
|
|
|
|
trainer_args.update(max_epochs=2)
|
|
trainer = Trainer(**trainer_args, resume_from_checkpoint=str(tmpdir / "last.ckpt"))
|
|
trainer.fit(model)
|
|
|
|
|
|
def test_try_resume_from_non_existing_checkpoint(tmpdir):
|
|
""" Test that trying to resume from non-existing `resume_from_checkpoint` fail without error."""
|
|
model = BoringModel()
|
|
checkpoint_cb = ModelCheckpoint(dirpath=tmpdir, monitor="early_stop_on", save_last=True)
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
logger=False,
|
|
callbacks=[checkpoint_cb],
|
|
limit_train_batches=0.1,
|
|
limit_val_batches=0.1,
|
|
)
|
|
# Generate checkpoint `last.ckpt` with BoringModel
|
|
trainer.fit(model)
|
|
# `True` if resume/restore successfully else `False`
|
|
assert trainer.checkpoint_connector.restore(str(tmpdir / "last.ckpt"), trainer.on_gpu)
|
|
assert not trainer.checkpoint_connector.restore(str(tmpdir / "last_non_existing.ckpt"), trainer.on_gpu)
|
|
|
|
|
|
class CaptureCallbacksBeforeTraining(Callback):
|
|
callbacks = []
|
|
|
|
def on_train_start(self, trainer, pl_module):
|
|
self.callbacks = deepcopy(trainer.callbacks)
|
|
|
|
|
|
def test_callbacks_state_resume_from_checkpoint(tmpdir):
|
|
""" Test that resuming from a checkpoint restores callbacks that persist state. """
|
|
model = EvalModelTemplate()
|
|
callback_capture = CaptureCallbacksBeforeTraining()
|
|
|
|
def get_trainer_args():
|
|
checkpoint = ModelCheckpoint(dirpath=tmpdir, monitor="early_stop_on", save_last=True)
|
|
trainer_args = dict(
|
|
default_root_dir=tmpdir, max_steps=1, logger=False, callbacks=[
|
|
checkpoint,
|
|
callback_capture,
|
|
]
|
|
)
|
|
assert checkpoint.best_model_path == ""
|
|
assert checkpoint.best_model_score is None
|
|
return trainer_args
|
|
|
|
# initial training
|
|
trainer = Trainer(**get_trainer_args())
|
|
trainer.fit(model)
|
|
callbacks_before_resume = deepcopy(trainer.callbacks)
|
|
|
|
# resumed training
|
|
trainer = Trainer(**get_trainer_args(), resume_from_checkpoint=str(tmpdir / "last.ckpt"))
|
|
trainer.fit(model)
|
|
|
|
assert len(callbacks_before_resume) == len(callback_capture.callbacks)
|
|
|
|
for before, after in zip(callbacks_before_resume, callback_capture.callbacks):
|
|
if isinstance(before, ModelCheckpoint):
|
|
assert before.best_model_path == after.best_model_path
|
|
assert before.best_model_score == after.best_model_score
|
|
|
|
|
|
def test_callbacks_references_resume_from_checkpoint(tmpdir):
|
|
""" Test that resuming from a checkpoint sets references as expected. """
|
|
model = EvalModelTemplate()
|
|
args = {'default_root_dir': tmpdir, 'max_steps': 1, 'logger': False}
|
|
|
|
# initial training
|
|
checkpoint = ModelCheckpoint(dirpath=tmpdir, monitor="early_stop_on", save_last=True)
|
|
trainer = Trainer(**args, callbacks=[checkpoint])
|
|
assert checkpoint is trainer.callbacks[-1] is trainer.checkpoint_callback
|
|
trainer.fit(model)
|
|
|
|
# resumed training
|
|
new_checkpoint = ModelCheckpoint(dirpath=tmpdir, monitor="early_stop_on", save_last=True)
|
|
# pass in a new checkpoint object, which should take
|
|
# precedence over the one in the last.ckpt file
|
|
trainer = Trainer(**args, callbacks=[new_checkpoint], resume_from_checkpoint=str(tmpdir / "last.ckpt"))
|
|
assert checkpoint is not new_checkpoint
|
|
assert new_checkpoint is trainer.callbacks[-1] is trainer.checkpoint_callback
|
|
trainer.fit(model)
|
|
|
|
|
|
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
|
|
def test_running_test_pretrained_model_distrib_dp(tmpdir):
|
|
"""Verify `test()` on pretrained model."""
|
|
|
|
tutils.set_random_master_port()
|
|
|
|
model = EvalModelTemplate()
|
|
|
|
# exp file to get meta
|
|
logger = tutils.get_default_logger(tmpdir)
|
|
|
|
# exp file to get weights
|
|
checkpoint = tutils.init_checkpoint_callback(logger)
|
|
|
|
trainer_options = dict(
|
|
progress_bar_refresh_rate=0,
|
|
max_epochs=2,
|
|
limit_train_batches=0.4,
|
|
limit_val_batches=0.2,
|
|
callbacks=[checkpoint],
|
|
logger=logger,
|
|
gpus=[0, 1],
|
|
accelerator='dp',
|
|
default_root_dir=tmpdir,
|
|
)
|
|
|
|
# fit model
|
|
trainer = Trainer(**trainer_options)
|
|
trainer.fit(model)
|
|
|
|
# correct result and ok accuracy
|
|
assert trainer.state == TrainerState.FINISHED, f"Training failed with {trainer.state}"
|
|
pretrained_model = EvalModelTemplate.load_from_checkpoint(trainer.checkpoint_callback.best_model_path)
|
|
|
|
# run test set
|
|
new_trainer = Trainer(**trainer_options)
|
|
results = new_trainer.test(pretrained_model)
|
|
pretrained_model.cpu()
|
|
|
|
# test we have good test accuracy
|
|
acc = results[0]['test_acc']
|
|
assert acc > 0.5, f"Model failed to get expected {0.5} accuracy. test_acc = {acc}"
|
|
|
|
dataloaders = model.test_dataloader()
|
|
if not isinstance(dataloaders, list):
|
|
dataloaders = [dataloaders]
|
|
|
|
for dataloader in dataloaders:
|
|
tpipes.run_prediction(pretrained_model, dataloader)
|
|
|
|
|
|
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
|
|
def test_running_test_pretrained_model_distrib_ddp_spawn(tmpdir):
|
|
"""Verify `test()` on pretrained model."""
|
|
tutils.set_random_master_port()
|
|
|
|
model = EvalModelTemplate()
|
|
|
|
# exp file to get meta
|
|
logger = tutils.get_default_logger(tmpdir)
|
|
|
|
# exp file to get weights
|
|
checkpoint = tutils.init_checkpoint_callback(logger)
|
|
|
|
trainer_options = dict(
|
|
progress_bar_refresh_rate=0,
|
|
max_epochs=2,
|
|
limit_train_batches=0.4,
|
|
limit_val_batches=0.2,
|
|
callbacks=[checkpoint],
|
|
logger=logger,
|
|
gpus=[0, 1],
|
|
accelerator='ddp_spawn',
|
|
default_root_dir=tmpdir,
|
|
)
|
|
|
|
# fit model
|
|
trainer = Trainer(**trainer_options)
|
|
trainer.fit(model)
|
|
|
|
log.info(os.listdir(tutils.get_data_path(logger, path_dir=tmpdir)))
|
|
|
|
# correct result and ok accuracy
|
|
assert trainer.state == TrainerState.FINISHED, f"Training failed with {trainer.state}"
|
|
pretrained_model = EvalModelTemplate.load_from_checkpoint(trainer.checkpoint_callback.best_model_path)
|
|
|
|
# run test set
|
|
new_trainer = Trainer(**trainer_options)
|
|
results = new_trainer.test(pretrained_model)
|
|
pretrained_model.cpu()
|
|
|
|
acc = results[0]['test_acc']
|
|
assert acc > 0.5, f"Model failed to get expected {0.5} accuracy. test_acc = {acc}"
|
|
|
|
dataloaders = model.test_dataloader()
|
|
if not isinstance(dataloaders, list):
|
|
dataloaders = [dataloaders]
|
|
|
|
for dataloader in dataloaders:
|
|
tpipes.run_prediction(pretrained_model, dataloader)
|
|
|
|
|
|
def test_running_test_pretrained_model_cpu(tmpdir):
|
|
"""Verify test() on pretrained model."""
|
|
model = EvalModelTemplate()
|
|
|
|
# logger file to get meta
|
|
logger = tutils.get_default_logger(tmpdir)
|
|
|
|
# logger file to get weights
|
|
checkpoint = tutils.init_checkpoint_callback(logger)
|
|
|
|
trainer_options = dict(
|
|
progress_bar_refresh_rate=0,
|
|
max_epochs=3,
|
|
limit_train_batches=0.4,
|
|
limit_val_batches=0.2,
|
|
callbacks=[checkpoint],
|
|
logger=logger,
|
|
default_root_dir=tmpdir,
|
|
)
|
|
|
|
# fit model
|
|
trainer = Trainer(**trainer_options)
|
|
trainer.fit(model)
|
|
|
|
# correct result and ok accuracy
|
|
assert trainer.state == TrainerState.FINISHED, f"Training failed with {trainer.state}"
|
|
pretrained_model = EvalModelTemplate.load_from_checkpoint(trainer.checkpoint_callback.best_model_path)
|
|
|
|
new_trainer = Trainer(**trainer_options)
|
|
new_trainer.test(pretrained_model)
|
|
|
|
# test we have good test accuracy
|
|
tutils.assert_ok_model_acc(new_trainer)
|
|
|
|
|
|
@pytest.mark.parametrize('model_template', [EvalModelTemplate, GenericEvalModelTemplate])
|
|
def test_load_model_from_checkpoint(tmpdir, model_template):
|
|
"""Verify test() on pretrained model."""
|
|
hparams = model_template.get_default_hparams()
|
|
model = model_template(**hparams)
|
|
|
|
trainer_options = dict(
|
|
progress_bar_refresh_rate=0,
|
|
max_epochs=2,
|
|
limit_train_batches=0.4,
|
|
limit_val_batches=0.2,
|
|
callbacks=[ModelCheckpoint(dirpath=tmpdir, monitor='early_stop_on', save_top_k=-1)],
|
|
default_root_dir=tmpdir,
|
|
)
|
|
|
|
# fit model
|
|
trainer = Trainer(**trainer_options)
|
|
trainer.fit(model)
|
|
trainer.test(ckpt_path=None)
|
|
|
|
# correct result and ok accuracy
|
|
assert trainer.state == TrainerState.FINISHED, f"Training failed with {trainer.state}"
|
|
|
|
# load last checkpoint
|
|
last_checkpoint = sorted(glob.glob(os.path.join(trainer.checkpoint_callback.dirpath, "*.ckpt")))[-1]
|
|
|
|
# Since `EvalModelTemplate` has `_save_hparams = True` by default, check that ckpt has hparams
|
|
ckpt = torch.load(last_checkpoint)
|
|
assert model_template.CHECKPOINT_HYPER_PARAMS_KEY in ckpt.keys(), 'hyper_parameters missing from checkpoints'
|
|
|
|
# Ensure that model can be correctly restored from checkpoint
|
|
pretrained_model = model_template.load_from_checkpoint(last_checkpoint)
|
|
|
|
# test that hparams loaded correctly
|
|
for k, v in hparams.items():
|
|
assert getattr(pretrained_model, k) == v
|
|
|
|
# assert weights are the same
|
|
for (old_name, old_p), (new_name, new_p) in zip(model.named_parameters(), pretrained_model.named_parameters()):
|
|
assert torch.all(torch.eq(old_p, new_p)), 'loaded weights are not the same as the saved weights'
|
|
|
|
# Check `test` on pretrained model:
|
|
new_trainer = Trainer(**trainer_options)
|
|
new_trainer.test(pretrained_model)
|
|
|
|
# test we have good test accuracy
|
|
tutils.assert_ok_model_acc(new_trainer)
|
|
|
|
|
|
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
|
|
def test_dp_resume(tmpdir):
|
|
"""Make sure DP continues training correctly."""
|
|
hparams = EvalModelTemplate.get_default_hparams()
|
|
model = EvalModelTemplate(**hparams)
|
|
|
|
trainer_options = dict(max_epochs=1, gpus=2, accelerator='dp', default_root_dir=tmpdir)
|
|
|
|
# get logger
|
|
logger = tutils.get_default_logger(tmpdir)
|
|
|
|
# exp file to get weights
|
|
# logger file to get weights
|
|
checkpoint = tutils.init_checkpoint_callback(logger)
|
|
|
|
# add these to the trainer options
|
|
trainer_options['logger'] = logger
|
|
trainer_options['checkpoint_callback'] = checkpoint
|
|
|
|
# fit model
|
|
trainer = Trainer(**trainer_options)
|
|
trainer.is_slurm_managing_tasks = True
|
|
trainer.fit(model)
|
|
|
|
# track epoch before saving. Increment since we finished the current epoch, don't want to rerun
|
|
real_global_epoch = trainer.current_epoch + 1
|
|
|
|
# correct result and ok accuracy
|
|
assert trainer.state == TrainerState.FINISHED, f"Training failed with {trainer.state}"
|
|
|
|
# ---------------------------
|
|
# HPC LOAD/SAVE
|
|
# ---------------------------
|
|
# save
|
|
trainer.checkpoint_connector.hpc_save(tmpdir, logger)
|
|
|
|
# init new trainer
|
|
new_logger = tutils.get_default_logger(tmpdir, version=logger.version)
|
|
trainer_options['logger'] = new_logger
|
|
trainer_options['checkpoint_callback'] = ModelCheckpoint(dirpath=tmpdir)
|
|
trainer_options['limit_train_batches'] = 0.5
|
|
trainer_options['limit_val_batches'] = 0.2
|
|
trainer_options['max_epochs'] = 1
|
|
new_trainer = Trainer(**trainer_options)
|
|
|
|
# set the epoch start hook so we can predict before the model does the full training
|
|
def assert_good_acc():
|
|
assert new_trainer.current_epoch == real_global_epoch and new_trainer.current_epoch > 0
|
|
|
|
# if model and state loaded correctly, predictions will be good even though we
|
|
# haven't trained with the new loaded model
|
|
dp_model = new_trainer.model
|
|
dp_model.eval()
|
|
dp_model.module.module.running_stage = RunningStage.EVALUATING
|
|
|
|
dataloader = trainer.train_dataloader
|
|
tpipes.run_prediction(dp_model, dataloader, dp=True)
|
|
|
|
# new model
|
|
model = EvalModelTemplate(**hparams)
|
|
model.on_train_start = assert_good_acc
|
|
|
|
# fit new model which should load hpc weights
|
|
new_trainer.fit(model)
|
|
|
|
# test freeze on gpu
|
|
model.freeze()
|
|
model.unfreeze()
|
|
|
|
|
|
def test_model_saving_loading(tmpdir):
|
|
"""Tests use case where trainer saves the model, and user loads it from tags independently."""
|
|
model = EvalModelTemplate()
|
|
|
|
# logger file to get meta
|
|
logger = tutils.get_default_logger(tmpdir)
|
|
|
|
# fit model
|
|
trainer = Trainer(
|
|
max_epochs=1,
|
|
logger=logger,
|
|
callbacks=[ModelCheckpoint(dirpath=tmpdir)],
|
|
default_root_dir=tmpdir,
|
|
)
|
|
trainer.fit(model)
|
|
|
|
# traning complete
|
|
assert trainer.state == TrainerState.FINISHED, f"Training failed with {trainer.state}"
|
|
|
|
# make a prediction
|
|
dataloaders = model.test_dataloader()
|
|
if not isinstance(dataloaders, list):
|
|
dataloaders = [dataloaders]
|
|
|
|
for dataloader in dataloaders:
|
|
for batch in dataloader:
|
|
break
|
|
|
|
x, y = batch
|
|
x = x.view(x.size(0), -1)
|
|
|
|
# generate preds before saving model
|
|
model.eval()
|
|
pred_before_saving = model(x)
|
|
|
|
# save model
|
|
new_weights_path = os.path.join(tmpdir, 'save_test.ckpt')
|
|
trainer.save_checkpoint(new_weights_path)
|
|
|
|
# load new model
|
|
hparams_path = tutils.get_data_path(logger, path_dir=tmpdir)
|
|
hparams_path = os.path.join(hparams_path, 'hparams.yaml')
|
|
model_2 = EvalModelTemplate.load_from_checkpoint(
|
|
checkpoint_path=new_weights_path,
|
|
hparams_file=hparams_path,
|
|
)
|
|
model_2.eval()
|
|
|
|
# make prediction
|
|
# assert that both predictions are the same
|
|
new_pred = model_2(x)
|
|
assert torch.all(torch.eq(pred_before_saving, new_pred)).item() == 1
|
|
|
|
|
|
@pytest.mark.parametrize('url_ckpt', [True, False])
|
|
def test_strict_model_load_more_params(monkeypatch, tmpdir, tmpdir_server, url_ckpt):
|
|
"""Tests use case where trainer saves the model, and user loads it from tags independently."""
|
|
# set $TORCH_HOME, which determines torch hub's cache path, to tmpdir
|
|
monkeypatch.setenv('TORCH_HOME', tmpdir)
|
|
|
|
model = EvalModelTemplate()
|
|
# Extra layer
|
|
model.c_d3 = torch.nn.Linear(model.hidden_dim, model.hidden_dim)
|
|
|
|
# logger file to get meta
|
|
logger = tutils.get_default_logger(tmpdir)
|
|
|
|
# fit model
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
logger=logger,
|
|
callbacks=[ModelCheckpoint(dirpath=tmpdir)],
|
|
)
|
|
trainer.fit(model)
|
|
|
|
# traning complete
|
|
assert trainer.state == TrainerState.FINISHED, f"Training failed with {trainer.state}"
|
|
|
|
# save model
|
|
new_weights_path = os.path.join(tmpdir, 'save_test.ckpt')
|
|
trainer.save_checkpoint(new_weights_path)
|
|
|
|
# load new model
|
|
hparams_path = os.path.join(tutils.get_data_path(logger, path_dir=tmpdir), 'hparams.yaml')
|
|
hparams_url = f'http://{tmpdir_server[0]}:{tmpdir_server[1]}/{os.path.basename(new_weights_path)}'
|
|
ckpt_path = hparams_url if url_ckpt else new_weights_path
|
|
|
|
EvalModelTemplate.load_from_checkpoint(
|
|
checkpoint_path=ckpt_path,
|
|
hparams_file=hparams_path,
|
|
strict=False,
|
|
)
|
|
|
|
with pytest.raises(RuntimeError, match=r'Unexpected key\(s\) in state_dict: "c_d3.weight", "c_d3.bias"'):
|
|
EvalModelTemplate.load_from_checkpoint(
|
|
checkpoint_path=ckpt_path,
|
|
hparams_file=hparams_path,
|
|
strict=True,
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize('url_ckpt', [True, False])
|
|
def test_strict_model_load_less_params(monkeypatch, tmpdir, tmpdir_server, url_ckpt):
|
|
"""Tests use case where trainer saves the model, and user loads it from tags independently."""
|
|
# set $TORCH_HOME, which determines torch hub's cache path, to tmpdir
|
|
monkeypatch.setenv('TORCH_HOME', tmpdir)
|
|
|
|
model = EvalModelTemplate()
|
|
|
|
# logger file to get meta
|
|
logger = tutils.get_default_logger(tmpdir)
|
|
|
|
# fit model
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
logger=logger,
|
|
callbacks=[ModelCheckpoint(dirpath=tmpdir)],
|
|
)
|
|
trainer.fit(model)
|
|
|
|
# traning complete
|
|
assert trainer.state == TrainerState.FINISHED, f"Training failed with {trainer.state}"
|
|
|
|
# save model
|
|
new_weights_path = os.path.join(tmpdir, 'save_test.ckpt')
|
|
trainer.save_checkpoint(new_weights_path)
|
|
|
|
# load new model
|
|
hparams_path = os.path.join(tutils.get_data_path(logger, path_dir=tmpdir), 'hparams.yaml')
|
|
hparams_url = f'http://{tmpdir_server[0]}:{tmpdir_server[1]}/{os.path.basename(new_weights_path)}'
|
|
ckpt_path = hparams_url if url_ckpt else new_weights_path
|
|
|
|
class CurrentModel(EvalModelTemplate):
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.c_d3 = torch.nn.Linear(7, 7)
|
|
|
|
CurrentModel.load_from_checkpoint(
|
|
checkpoint_path=ckpt_path,
|
|
hparams_file=hparams_path,
|
|
strict=False,
|
|
)
|
|
|
|
with pytest.raises(RuntimeError, match=r'Missing key\(s\) in state_dict: "c_d3.weight", "c_d3.bias"'):
|
|
CurrentModel.load_from_checkpoint(
|
|
checkpoint_path=ckpt_path,
|
|
hparams_file=hparams_path,
|
|
strict=True,
|
|
)
|
|
|
|
|
|
def test_model_pickle(tmpdir):
|
|
model = EvalModelTemplate()
|
|
pickle.dumps(model)
|
|
cloudpickle.dumps(model)
|