lightning/tests/tests_fabric/strategies/launchers/test_multiprocessing.py

108 lines
4.7 KiB
Python

# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from unittest import mock
from unittest.mock import ANY, Mock
import pytest
import torch
from lightning.fabric.strategies.launchers.multiprocessing import _GlobalStateSnapshot, _MultiProcessingLauncher
from tests_fabric.helpers.runif import RunIf
@RunIf(skip_windows=True)
@pytest.mark.parametrize("start_method", ["fork", "forkserver"])
def test_interactive_compatible(start_method):
launcher = _MultiProcessingLauncher(strategy=Mock(), start_method=start_method)
assert launcher.is_interactive_compatible == (start_method == "fork")
@mock.patch("lightning.fabric.strategies.launchers.multiprocessing.mp.get_all_start_methods", return_value=[])
def test_forking_on_unsupported_platform(_):
with pytest.raises(ValueError, match="The start method 'fork' is not available on this platform"):
_MultiProcessingLauncher(strategy=Mock(), start_method="fork")
@pytest.mark.parametrize("start_method", ["spawn", pytest.param("fork", marks=RunIf(standalone=True))])
@mock.patch("lightning.fabric.strategies.launchers.multiprocessing.mp")
@mock.patch("lightning.fabric.strategies.launchers.multiprocessing._check_missing_main_guard")
def test_start_method(_, mp_mock, start_method):
mp_mock.get_all_start_methods.return_value = [start_method]
launcher = _MultiProcessingLauncher(strategy=Mock(), start_method=start_method)
launcher.launch(function=Mock())
mp_mock.get_context.assert_called_with(start_method)
mp_mock.start_processes.assert_called_with(
ANY,
args=ANY,
nprocs=ANY,
start_method=start_method,
)
@pytest.mark.parametrize("start_method", ["spawn", pytest.param("fork", marks=RunIf(standalone=True))])
@mock.patch("lightning.fabric.strategies.launchers.multiprocessing.mp")
@mock.patch("lightning.fabric.strategies.launchers.multiprocessing._check_missing_main_guard")
def test_restore_globals(_, mp_mock, start_method):
"""Test that we pass the global state snapshot to the worker function only if we are starting with 'spawn'."""
mp_mock.get_all_start_methods.return_value = [start_method]
launcher = _MultiProcessingLauncher(strategy=Mock(), start_method=start_method)
launcher.launch(function=Mock())
function_args = mp_mock.start_processes.call_args[1]["args"]
if start_method == "spawn":
assert len(function_args) == 5
assert isinstance(function_args[4], _GlobalStateSnapshot)
else:
assert len(function_args) == 4
@pytest.mark.usefixtures("reset_deterministic_algorithm")
def test_global_state_snapshot():
"""Test the capture() and restore() methods for the global state snapshot."""
torch.use_deterministic_algorithms(True)
torch.backends.cudnn.benchmark = False
torch.manual_seed(123)
# capture the state of globals
snapshot = _GlobalStateSnapshot.capture()
# simulate there is a process boundary and flags get reset here
torch.use_deterministic_algorithms(False)
torch.backends.cudnn.benchmark = True
torch.manual_seed(321)
# restore the state of globals
snapshot.restore()
assert torch.are_deterministic_algorithms_enabled()
assert not torch.backends.cudnn.benchmark
assert torch.initial_seed() == 123
@pytest.mark.parametrize("start_method", ["fork", "forkserver"])
@mock.patch("torch.cuda.is_initialized", return_value=True)
@mock.patch("lightning.fabric.strategies.launchers.multiprocessing.mp")
def test_check_for_bad_cuda_fork(mp_mock, _, start_method):
mp_mock.get_all_start_methods.return_value = [start_method]
launcher = _MultiProcessingLauncher(strategy=Mock(), start_method=start_method)
with pytest.raises(RuntimeError, match="Lightning can't create new processes if CUDA is already initialized"):
launcher.launch(function=Mock())
def test_check_for_missing_main_guard():
launcher = _MultiProcessingLauncher(strategy=Mock(), start_method="spawn")
with mock.patch(
"lightning.fabric.strategies.launchers.multiprocessing.mp.current_process",
return_value=Mock(_inheriting=True), # pretend that main is importing itself
), pytest.raises(RuntimeError, match="requires that your script guards the main"):
launcher.launch(function=Mock())