lightning/tests/trainer/logging_/test_loop_logging.py

112 lines
4.2 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Test logging in the training loop."""
import inspect
from unittest import mock
from unittest.mock import ANY
import torch
from pytorch_lightning import Trainer
from pytorch_lightning.trainer.connectors.logger_connector.fx_validator import _FxValidator
from pytorch_lightning.trainer.connectors.logger_connector.result import _ResultCollection
from pytorch_lightning.trainer.states import RunningStage, TrainerFn
from tests.helpers.boring_model import BoringModel
def test_default_level_for_hooks_that_support_logging():
def _make_assertion(model, hooks, result_mock, on_step, on_epoch, extra_kwargs):
for hook in hooks:
model._current_fx_name = hook
model.log(hook, 1)
result_mock.assert_called_with(
hook, hook, torch.tensor(1), on_step=on_step, on_epoch=on_epoch, **extra_kwargs
)
trainer = Trainer()
model = BoringModel()
model.trainer = trainer
extra_kwargs = {
k: ANY
for k in inspect.signature(_ResultCollection.log).parameters
if k not in ["self", "fx", "name", "value", "on_step", "on_epoch"]
}
all_logging_hooks = {k for k in _FxValidator.functions if _FxValidator.functions[k]}
with mock.patch(
"pytorch_lightning.trainer.connectors.logger_connector.result._ResultCollection.log", return_value=None
) as result_mock:
trainer.state.stage = RunningStage.TRAINING
hooks = [
"on_before_backward",
"backward",
"on_after_backward",
"on_before_optimizer_step",
"optimizer_step",
"on_before_zero_grad",
"optimizer_zero_grad",
"training_step",
"training_step_end",
"on_batch_start",
"on_batch_end",
"on_train_batch_start",
"on_train_batch_end",
]
all_logging_hooks = all_logging_hooks - set(hooks)
_make_assertion(model, hooks, result_mock, on_step=True, on_epoch=False, extra_kwargs=extra_kwargs)
hooks = [
"on_train_start",
"on_train_epoch_start",
"on_train_epoch_end",
"on_epoch_start",
"on_epoch_end",
"training_epoch_end",
]
all_logging_hooks = all_logging_hooks - set(hooks)
_make_assertion(model, hooks, result_mock, on_step=False, on_epoch=True, extra_kwargs=extra_kwargs)
trainer.state.stage = RunningStage.VALIDATING
trainer.state.fn = TrainerFn.VALIDATING
hooks = [
"on_validation_start",
"on_validation_epoch_start",
"on_validation_epoch_end",
"on_validation_batch_start",
"on_validation_batch_end",
"validation_step",
"validation_step_end",
"validation_epoch_end",
]
all_logging_hooks = all_logging_hooks - set(hooks)
_make_assertion(model, hooks, result_mock, on_step=False, on_epoch=True, extra_kwargs=extra_kwargs)
trainer.state.stage = RunningStage.TESTING
trainer.state.fn = TrainerFn.TESTING
hooks = [
"on_test_start",
"on_test_epoch_start",
"on_test_epoch_end",
"on_test_batch_start",
"on_test_batch_end",
"test_step",
"test_step_end",
"test_epoch_end",
]
all_logging_hooks = all_logging_hooks - set(hooks)
_make_assertion(model, hooks, result_mock, on_step=False, on_epoch=True, extra_kwargs=extra_kwargs)
# just to ensure we checked all possible logging hooks here
assert len(all_logging_hooks) == 0