447 lines
15 KiB
Python
447 lines
15 KiB
Python
# Copyright The Lightning AI team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import os
|
|
from unittest import mock
|
|
from unittest.mock import Mock
|
|
|
|
import pytest
|
|
import torch
|
|
from torch.distributed.optim import ZeroRedundancyOptimizer
|
|
from torch.multiprocessing import ProcessRaisedException
|
|
from torch.nn.parallel.distributed import DistributedDataParallel
|
|
|
|
import lightning.pytorch as pl
|
|
import tests_pytorch.helpers.pipelines as tpipes
|
|
from lightning.fabric.plugins.environments import ClusterEnvironment, LightningEnvironment
|
|
from lightning.fabric.utilities.imports import _TORCH_GREATER_EQUAL_2_0
|
|
from lightning.pytorch import Trainer
|
|
from lightning.pytorch.callbacks import Callback, EarlyStopping
|
|
from lightning.pytorch.demos.boring_classes import BoringDataModule, BoringModel
|
|
from lightning.pytorch.strategies import DDPStrategy
|
|
from lightning.pytorch.strategies.launchers import _SubprocessScriptLauncher
|
|
from lightning.pytorch.strategies.launchers.multiprocessing import _MultiProcessingLauncher
|
|
from lightning.pytorch.trainer import seed_everything
|
|
from tests_pytorch.helpers.datamodules import ClassifDataModule
|
|
from tests_pytorch.helpers.runif import RunIf
|
|
from tests_pytorch.helpers.simple_models import ClassificationModel
|
|
|
|
|
|
@RunIf(min_cuda_gpus=2, standalone=True, sklearn=True)
|
|
def test_multi_gpu_model_ddp_fit_only(tmpdir):
|
|
dm = ClassifDataModule()
|
|
model = ClassificationModel()
|
|
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, accelerator="gpu", devices=2, strategy="ddp")
|
|
trainer.fit(model, datamodule=dm)
|
|
|
|
|
|
@RunIf(min_cuda_gpus=2, standalone=True, sklearn=True)
|
|
def test_multi_gpu_model_ddp_test_only(tmpdir):
|
|
dm = ClassifDataModule()
|
|
model = ClassificationModel()
|
|
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, accelerator="gpu", devices=2, strategy="ddp")
|
|
trainer.test(model, datamodule=dm)
|
|
|
|
|
|
@RunIf(min_cuda_gpus=2, standalone=True, sklearn=True)
|
|
def test_multi_gpu_model_ddp_fit_test(tmpdir):
|
|
seed_everything(4321)
|
|
dm = ClassifDataModule()
|
|
model = ClassificationModel()
|
|
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, accelerator="gpu", devices=2, strategy="ddp")
|
|
trainer.fit(model, datamodule=dm)
|
|
result = trainer.test(model, datamodule=dm)
|
|
|
|
for out in result:
|
|
assert out["test_acc"] > 0.7
|
|
|
|
|
|
@RunIf(skip_windows=True)
|
|
@mock.patch("torch.cuda.set_device")
|
|
@mock.patch("lightning.pytorch.accelerators.cuda._check_cuda_matmul_precision")
|
|
@mock.patch("lightning.pytorch.accelerators.cuda._clear_cuda_memory")
|
|
def test_ddp_torch_dist_is_available_in_setup(_, __, ___, cuda_count_1, mps_count_0, tmpdir):
|
|
"""Test to ensure torch distributed is available within the setup hook using ddp."""
|
|
|
|
class TestModel(BoringModel):
|
|
def setup(self, stage: str) -> None:
|
|
assert torch.distributed.is_initialized()
|
|
raise SystemExit()
|
|
|
|
model = TestModel()
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
fast_dev_run=True,
|
|
strategy=DDPStrategy(process_group_backend="gloo"),
|
|
accelerator="gpu",
|
|
devices=1,
|
|
)
|
|
with pytest.raises(SystemExit):
|
|
trainer.fit(model)
|
|
|
|
|
|
@RunIf(min_cuda_gpus=2, standalone=True)
|
|
@pytest.mark.parametrize("precision", ["16-mixed", "32-true"])
|
|
def test_ddp_wrapper(tmpdir, precision):
|
|
"""Test parameters to ignore are carried over for DDP."""
|
|
|
|
class WeirdModule(torch.nn.Module):
|
|
def _save_to_state_dict(self, destination, prefix, keep_vars):
|
|
return {"something": "something"}
|
|
|
|
class CustomModel(BoringModel):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.weird_module = WeirdModule()
|
|
|
|
# should be skipped
|
|
self._ddp_params_and_buffers_to_ignore = ["something"]
|
|
|
|
class CustomCallback(Callback):
|
|
def on_train_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
|
|
assert isinstance(trainer.strategy.model, DistributedDataParallel)
|
|
expected = ["something"]
|
|
assert (
|
|
trainer.strategy.model.parameters_to_ignore == set(expected) if _TORCH_GREATER_EQUAL_2_0 else expected
|
|
)
|
|
assert trainer.strategy.model.module._ddp_params_and_buffers_to_ignore == expected
|
|
|
|
model = CustomModel()
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
fast_dev_run=True,
|
|
precision=precision,
|
|
strategy="ddp",
|
|
accelerator="gpu",
|
|
devices=2,
|
|
callbacks=CustomCallback(),
|
|
enable_progress_bar=False,
|
|
enable_model_summary=False,
|
|
)
|
|
trainer.fit(model)
|
|
|
|
|
|
@RunIf(min_cuda_gpus=2, sklearn=True)
|
|
def test_multi_gpu_early_stop_ddp_spawn(tmpdir):
|
|
seed_everything(42)
|
|
|
|
trainer_options = {
|
|
"default_root_dir": tmpdir,
|
|
"callbacks": [EarlyStopping(monitor="train_acc")],
|
|
"max_epochs": 50,
|
|
"limit_train_batches": 10,
|
|
"limit_val_batches": 10,
|
|
"accelerator": "gpu",
|
|
"devices": [0, 1],
|
|
"strategy": "ddp_spawn",
|
|
}
|
|
|
|
dm = ClassifDataModule()
|
|
model = ClassificationModel()
|
|
tpipes.run_model_test(trainer_options, model, dm)
|
|
|
|
|
|
@RunIf(min_cuda_gpus=2)
|
|
def test_multi_gpu_model_ddp_spawn(tmpdir):
|
|
seed_everything(42)
|
|
|
|
trainer_options = {
|
|
"default_root_dir": tmpdir,
|
|
"max_epochs": 1,
|
|
"limit_train_batches": 10,
|
|
"limit_val_batches": 10,
|
|
"accelerator": "gpu",
|
|
"devices": [0, 1],
|
|
"strategy": "ddp_spawn",
|
|
"enable_progress_bar": False,
|
|
}
|
|
|
|
model = BoringModel()
|
|
|
|
tpipes.run_model_test(trainer_options, model)
|
|
|
|
|
|
@RunIf(min_cuda_gpus=2)
|
|
def test_ddp_all_dataloaders_passed_to_fit(tmpdir):
|
|
"""Make sure DDP works with dataloaders passed to fit()"""
|
|
model = BoringModel()
|
|
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
enable_progress_bar=False,
|
|
max_epochs=1,
|
|
limit_train_batches=0.2,
|
|
limit_val_batches=0.2,
|
|
accelerator="gpu",
|
|
devices=[0, 1],
|
|
strategy="ddp_spawn",
|
|
)
|
|
trainer.fit(model, train_dataloaders=model.train_dataloader(), val_dataloaders=model.val_dataloader())
|
|
assert trainer.state.finished, "DDP doesn't work with dataloaders passed to fit()."
|
|
|
|
|
|
class UnusedParametersModel(BoringModel):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.intermediate_layer = torch.nn.Linear(32, 32)
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
with torch.no_grad():
|
|
batch = self.intermediate_layer(batch)
|
|
return super().training_step(batch, batch_idx)
|
|
|
|
|
|
def test_find_unused_parameters_exception():
|
|
"""Test that the DDP strategy can change PyTorch's error message so that it's more useful for Lightning users."""
|
|
trainer = Trainer(accelerator="cpu", devices=1, strategy="ddp_spawn", max_steps=2)
|
|
with pytest.raises(
|
|
ProcessRaisedException, match="It looks like your LightningModule has parameters that were not used in"
|
|
):
|
|
trainer.fit(UnusedParametersModel())
|
|
|
|
trainer = Trainer(accelerator="cpu", devices=1, strategy="ddp", max_steps=2)
|
|
with pytest.raises(RuntimeError, match="It looks like your LightningModule has parameters that were not used in"):
|
|
trainer.fit(UnusedParametersModel())
|
|
|
|
|
|
class BoringCallbackDDPSpawnModel(BoringModel):
|
|
def __init__(self, name: str, val: float):
|
|
super().__init__()
|
|
self.name = name
|
|
self.val = val
|
|
|
|
def validation_step(self, batch, batch_idx):
|
|
self.log(self.name, self.val)
|
|
return super().validation_step(batch, batch_idx)
|
|
|
|
|
|
class CustomMultiProcessingLauncher(_MultiProcessingLauncher):
|
|
def get_extra_results(self, trainer):
|
|
extra = super().get_extra_results(trainer)
|
|
extra["test_val"] = "test_val"
|
|
return extra
|
|
|
|
def update_main_process_results(self, trainer, extra) -> None:
|
|
trainer.strategy.test_val = extra.pop("test_val")
|
|
return super().update_main_process_results(trainer, extra)
|
|
|
|
|
|
class TestDDPSpawnStrategy(DDPStrategy):
|
|
def _configure_launcher(self):
|
|
self._launcher = CustomMultiProcessingLauncher(self)
|
|
|
|
|
|
@RunIf(skip_windows=True)
|
|
def test_ddp_spawn_add_get_queue(tmpdir):
|
|
"""Tests get_extra_results/update_main_process_results with DDPSpawnStrategy."""
|
|
ddp_spawn_strategy = TestDDPSpawnStrategy()
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir, fast_dev_run=True, accelerator="cpu", devices=2, strategy=ddp_spawn_strategy
|
|
)
|
|
|
|
val: float = 1.0
|
|
val_name: str = "val_acc"
|
|
model = BoringCallbackDDPSpawnModel(val_name, val)
|
|
dm = BoringDataModule()
|
|
trainer.fit(model, datamodule=dm)
|
|
assert trainer.callback_metrics[val_name] == torch.tensor(val)
|
|
assert ddp_spawn_strategy.test_val == "test_val"
|
|
|
|
|
|
class BoringModelDDPCPU(BoringModel):
|
|
def on_train_start(self) -> None:
|
|
# make sure that the model is on CPU when training
|
|
assert self.device == torch.device("cpu")
|
|
|
|
|
|
@RunIf(skip_windows=True)
|
|
def test_ddp_cpu():
|
|
"""Tests if device is set correctly when training for DDPStrategy."""
|
|
trainer = Trainer(devices=2, strategy="ddp_spawn", accelerator="cpu", fast_dev_run=True)
|
|
# assert strategy attributes for device setting
|
|
assert isinstance(trainer.strategy, DDPStrategy)
|
|
assert trainer.strategy.root_device == torch.device("cpu")
|
|
model = BoringModelDDPCPU()
|
|
trainer.fit(model)
|
|
|
|
|
|
class BoringZeroRedundancyOptimizerModel(BoringModel):
|
|
def configure_optimizers(self):
|
|
return ZeroRedundancyOptimizer(self.layer.parameters(), optimizer_class=torch.optim.Adam, lr=0.1)
|
|
|
|
|
|
@RunIf(min_cuda_gpus=2, skip_windows=True)
|
|
@pytest.mark.parametrize("strategy", [pytest.param("ddp", marks=RunIf(standalone=True)), "ddp_spawn"])
|
|
def test_ddp_strategy_checkpoint_zero_redundancy_optimizer(tmpdir, strategy):
|
|
"""Test to ensure that checkpoint is saved correctly when using zero redundancy optimizer."""
|
|
model = BoringZeroRedundancyOptimizerModel()
|
|
trainer = Trainer(accelerator="gpu", devices=2, strategy=strategy, max_steps=1)
|
|
|
|
trainer.fit(model)
|
|
|
|
checkpoint_path = os.path.join(tmpdir, "model.pt")
|
|
# need to broadcast because tmpdir is different on each process
|
|
checkpoint_path = trainer.strategy.broadcast(checkpoint_path)
|
|
trainer.save_checkpoint(checkpoint_path)
|
|
saved_model = BoringModel.load_from_checkpoint(checkpoint_path)
|
|
|
|
# Assert model parameters are identical after loading
|
|
for trained_param, loaded_param in zip(model.parameters(), saved_model.parameters()):
|
|
assert torch.equal(trained_param.to("cpu"), loaded_param)
|
|
|
|
|
|
def test_configure_launcher_create_processes_externally():
|
|
class MyClusterEnvironment(ClusterEnvironment):
|
|
@property
|
|
def creates_processes_externally(self):
|
|
return True
|
|
|
|
@property
|
|
def main_address(self):
|
|
return ""
|
|
|
|
@property
|
|
def main_port(self):
|
|
return 8080
|
|
|
|
@staticmethod
|
|
def detect():
|
|
return True
|
|
|
|
def world_size(self):
|
|
return 1
|
|
|
|
def set_world_size(self):
|
|
pass
|
|
|
|
def global_rank(self):
|
|
return 0
|
|
|
|
def set_global_rank(self):
|
|
pass
|
|
|
|
def local_rank(self):
|
|
return 0
|
|
|
|
def node_rank(self):
|
|
return 0
|
|
|
|
ddp_strategy = DDPStrategy(cluster_environment=MyClusterEnvironment())
|
|
assert ddp_strategy.launcher is None
|
|
ddp_strategy._configure_launcher()
|
|
assert isinstance(ddp_strategy.launcher, _SubprocessScriptLauncher)
|
|
|
|
ddp_strategy.launcher._call_children_scripts = Mock()
|
|
launch_fn = Mock()
|
|
ddp_strategy.launcher.launch(launch_fn)
|
|
ddp_strategy.launcher._call_children_scripts.assert_not_called()
|
|
launch_fn.assert_called_once()
|
|
|
|
|
|
class CheckOptimizerDeviceModel(BoringModel):
|
|
def configure_optimizers(self):
|
|
assert all(param.device.type == "cuda" for param in self.parameters())
|
|
super().configure_optimizers()
|
|
|
|
|
|
@RunIf(min_cuda_gpus=1)
|
|
@pytest.mark.parametrize("strategy", ["ddp", "ddp_spawn"])
|
|
def test_model_parameters_on_device_for_optimizer(strategy):
|
|
"""Test that the strategy has moved the parameters to the device by the time the optimizer gets created."""
|
|
model = CheckOptimizerDeviceModel()
|
|
trainer = Trainer(
|
|
default_root_dir=os.getcwd(),
|
|
fast_dev_run=1,
|
|
accelerator="gpu",
|
|
devices=1,
|
|
strategy=strategy,
|
|
)
|
|
trainer.fit(model)
|
|
|
|
|
|
class BoringModelGPU(BoringModel):
|
|
def on_train_start(self) -> None:
|
|
# make sure that the model is on GPU when training
|
|
assert self.device == torch.device(f"cuda:{self.trainer.strategy.local_rank}")
|
|
self.start_cuda_memory = torch.cuda.memory_allocated()
|
|
|
|
|
|
@RunIf(min_cuda_gpus=2, skip_windows=True, standalone=True)
|
|
def test_ddp_with_2_gpus():
|
|
"""Tests if device is set correctly when training and after teardown for DDPStrategy."""
|
|
trainer = Trainer(
|
|
accelerator="gpu",
|
|
devices=2,
|
|
strategy="ddp",
|
|
fast_dev_run=True,
|
|
enable_progress_bar=False,
|
|
enable_model_summary=False,
|
|
)
|
|
# assert strategy attributes for device setting
|
|
assert isinstance(trainer.strategy, DDPStrategy)
|
|
local_rank = trainer.strategy.local_rank
|
|
assert trainer.strategy.root_device == torch.device(f"cuda:{local_rank}")
|
|
|
|
model = BoringModelGPU()
|
|
|
|
trainer.fit(model)
|
|
|
|
# assert after training, model is moved to CPU and memory is deallocated
|
|
assert model.device == torch.device("cpu")
|
|
cuda_memory = torch.cuda.memory_allocated()
|
|
assert cuda_memory < model.start_cuda_memory
|
|
|
|
|
|
@RunIf(min_cuda_gpus=4, standalone=True)
|
|
@mock.patch("torch.distributed.barrier")
|
|
def test_ddp_barrier_non_consecutive_device_ids(barrier_mock, tmpdir):
|
|
"""Test correct usage of barriers when device ids do not start at 0 or are not consecutive."""
|
|
model = BoringModel()
|
|
gpus = [1, 3]
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_steps=1,
|
|
accelerator="gpu",
|
|
devices=gpus,
|
|
strategy="ddp",
|
|
enable_progress_bar=False,
|
|
enable_model_summary=False,
|
|
)
|
|
trainer.fit(model)
|
|
barrier_mock.assert_any_call(device_ids=[gpus[trainer.local_rank]])
|
|
|
|
|
|
@mock.patch.dict(os.environ, {"LOCAL_RANK": "1"})
|
|
def test_incorrect_ddp_script_spawning(tmpdir):
|
|
"""Test an error message when user accidentally instructs Lightning to spawn children processes on rank > 0."""
|
|
|
|
class WronglyImplementedEnvironment(LightningEnvironment):
|
|
@property
|
|
def creates_processes_externally(self):
|
|
# returning false no matter what means Lightning would spawn also on ranks > 0 new processes
|
|
return False
|
|
|
|
model = BoringModel()
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
strategy="ddp",
|
|
accelerator="cpu",
|
|
devices=2,
|
|
plugins=[WronglyImplementedEnvironment()],
|
|
)
|
|
with pytest.raises(
|
|
RuntimeError, match="Lightning attempted to launch new distributed processes with `local_rank > 0`."
|
|
):
|
|
trainer.fit(model)
|