137 lines
5.9 KiB
Python
137 lines
5.9 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from contextlib import contextmanager
|
|
from typing import Dict, Generator, List, Optional, Tuple, Union
|
|
|
|
import torch
|
|
from torch.nn import Module
|
|
from torch.optim import Optimizer
|
|
|
|
import pytorch_lightning as pl
|
|
from pytorch_lightning.core.optimizer import LightningOptimizer
|
|
from pytorch_lightning.strategies.ddp import DDPStrategy
|
|
from pytorch_lightning.trainer.states import TrainerFn
|
|
from pytorch_lightning.utilities import _FAIRSCALE_AVAILABLE, _FAIRSCALE_OSS_FP16_BROADCAST_AVAILABLE, rank_zero_only
|
|
from pytorch_lightning.utilities.enums import _StrategyType, PrecisionType
|
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
|
|
|
if _FAIRSCALE_AVAILABLE:
|
|
from fairscale.nn.data_parallel.sharded_ddp import ShardedDataParallel
|
|
from fairscale.optim import OSS
|
|
|
|
from pytorch_lightning.overrides.fairscale import LightningShardedDataParallel, unwrap_lightning_module_sharded
|
|
|
|
|
|
class DDPShardedStrategy(DDPStrategy):
|
|
"""Optimizer and gradient sharded training provided by FairScale."""
|
|
|
|
distributed_backend = _StrategyType.DDP_SHARDED
|
|
_REDUCE_BUFFER_SIZE_DEFAULT: int = 2 ** 23 # 8M
|
|
|
|
def configure_ddp(self) -> None:
|
|
trainer = self.lightning_module.trainer
|
|
if "reduce_buffer_size" not in self._ddp_kwargs:
|
|
# For multi-node training, enabling bucketing will improve performance.
|
|
self._ddp_kwargs["reduce_buffer_size"] = self._REDUCE_BUFFER_SIZE_DEFAULT if self.num_nodes > 1 else 0
|
|
|
|
self.model, self.optimizers = self._setup_model_and_optimizers(
|
|
model=LightningShardedDataParallel(self.model),
|
|
optimizers=trainer.optimizers,
|
|
)
|
|
|
|
def _setup_model_and_optimizers(self, model: Module, optimizers: List[Optimizer]) -> Tuple[Module, List[Optimizer]]:
|
|
"""Wraps the model and optimizers with fairscale components.
|
|
|
|
Return:
|
|
The model wrapped into a :class:`~fairscale.nn.data_parallel.ShardedDataParallel` module
|
|
and a list of optimizer wrapped in :class:~`fairscale.optim.OSS`.
|
|
"""
|
|
optimizers = self._wrap_optimizers(optimizers)
|
|
model = ShardedDataParallel(model, sharded_optimizer=optimizers, **self._ddp_kwargs)
|
|
return model, optimizers
|
|
|
|
def _reinit_optimizers_with_oss(self, optimizers: List[Union[Optimizer, LightningOptimizer]]) -> List["OSS"]:
|
|
for x, optimizer in enumerate(optimizers):
|
|
if isinstance(optimizer, LightningOptimizer):
|
|
optimizer = optimizer._optimizer
|
|
if not isinstance(optimizer, OSS):
|
|
optim_class = type(optimizer)
|
|
zero_optimizer = OSS(params=optimizer.param_groups, optim=optim_class, **optimizer.defaults)
|
|
if _FAIRSCALE_OSS_FP16_BROADCAST_AVAILABLE:
|
|
is_fp16 = self.precision_plugin.precision in (PrecisionType.MIXED, PrecisionType.HALF)
|
|
# For multi-node training, compressing the model shards in fp16 before broadcasting
|
|
# improves performance. When using PyTorch AMP, it will not degrade
|
|
# the model performance.
|
|
zero_optimizer.broadcast_fp16 = is_fp16 and self.num_nodes > 1
|
|
optimizers[x] = zero_optimizer
|
|
del optimizer
|
|
return optimizers
|
|
|
|
def _wrap_optimizers(self, optimizers: List[Optimizer]) -> List["OSS"]:
|
|
if self.model is not None and self.model.trainer.state.fn != TrainerFn.FITTING:
|
|
return optimizers
|
|
|
|
return self._reinit_optimizers_with_oss(optimizers)
|
|
|
|
def optimizer_state(self, optimizer: "OSS") -> Optional[dict]:
|
|
if isinstance(optimizer, LightningOptimizer):
|
|
optimizer = optimizer._optimizer
|
|
optimizer.consolidate_state_dict()
|
|
return self._optim_state_dict(optimizer)
|
|
|
|
@rank_zero_only
|
|
def _optim_state_dict(self, optimizer):
|
|
"""
|
|
Retrieves state dict only on rank 0, which contains the entire optimizer state after calling
|
|
:meth:`consolidate_state_dict`.
|
|
"""
|
|
return optimizer.state_dict()
|
|
|
|
@property
|
|
def lightning_module(self) -> Optional["pl.LightningModule"]:
|
|
if not _FAIRSCALE_AVAILABLE: # pragma: no cover
|
|
raise MisconfigurationException(
|
|
"`DDPShardedStrategy` requires `fairscale` to be installed."
|
|
" Install it by running `pip install fairscale`."
|
|
)
|
|
return unwrap_lightning_module_sharded(self.model) if self.model is not None else None
|
|
|
|
def pre_backward(self, closure_loss: torch.Tensor) -> None:
|
|
pass
|
|
|
|
@contextmanager
|
|
def block_backward_sync(self) -> Generator:
|
|
"""Blocks syncing gradients behaviour on backwards pass.
|
|
|
|
This is useful for skipping sync when accumulating gradients, reducing communication overhead
|
|
Returns: context manager with sync behaviour off
|
|
"""
|
|
if isinstance(self.model, ShardedDataParallel):
|
|
with self.model.no_sync():
|
|
yield None
|
|
else:
|
|
yield None
|
|
|
|
def post_training_step(self):
|
|
pass
|
|
|
|
@classmethod
|
|
def register_strategies(cls, strategy_registry: Dict) -> None:
|
|
strategy_registry.register(
|
|
"ddp_sharded_find_unused_parameters_false",
|
|
cls,
|
|
description="DDP Sharded Strategy with `find_unused_parameters` as False",
|
|
find_unused_parameters=False,
|
|
)
|