lightning/pytorch_lightning/trainer/states.py

107 lines
3.5 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
from typing import Optional
from pytorch_lightning.utilities import LightningEnum
from pytorch_lightning.utilities.enums import _FaultTolerantMode
class TrainerStatus(LightningEnum):
"""Enum for the status of the :class:`~pytorch_lightning.trainer.trainer.Trainer`"""
INITIALIZING = "initializing" # trainer creation
RUNNING = "running"
FINISHED = "finished"
INTERRUPTED = "interrupted"
@property
def stopped(self) -> bool:
return self in (self.FINISHED, self.INTERRUPTED)
class TrainerFn(LightningEnum):
"""
Enum for the user-facing functions of the :class:`~pytorch_lightning.trainer.trainer.Trainer`
such as :meth:`~pytorch_lightning.trainer.trainer.Trainer.fit` and
:meth:`~pytorch_lightning.trainer.trainer.Trainer.test`.
"""
FITTING = "fit"
VALIDATING = "validate"
TESTING = "test"
PREDICTING = "predict"
TUNING = "tune"
@property
def _setup_fn(self) -> "TrainerFn":
"""``FITTING`` is used instead of ``TUNING`` as there are no "tune" dataloaders.
This is used for the ``setup()`` and ``teardown()`` hooks
"""
return TrainerFn.FITTING if self == TrainerFn.TUNING else self
class RunningStage(LightningEnum):
"""Enum for the current running stage.
This stage complements :class:`TrainerFn` by specifying the current running stage for each function.
More than one running stage value can be set while a :class:`TrainerFn` is running:
- ``TrainerFn.FITTING`` - ``RunningStage.{SANITY_CHECKING,TRAINING,VALIDATING}``
- ``TrainerFn.VALIDATING`` - ``RunningStage.VALIDATING``
- ``TrainerFn.TESTING`` - ``RunningStage.TESTING``
- ``TrainerFn.PREDICTING`` - ``RunningStage.PREDICTING``
- ``TrainerFn.TUNING`` - ``RunningStage.{TUNING,SANITY_CHECKING,TRAINING,VALIDATING}``
"""
TRAINING = "train"
SANITY_CHECKING = "sanity_check"
VALIDATING = "validate"
TESTING = "test"
PREDICTING = "predict"
TUNING = "tune"
@property
def evaluating(self) -> bool:
return self in (self.VALIDATING, self.TESTING)
@property
def dataloader_prefix(self) -> Optional[str]:
if self in (self.SANITY_CHECKING, self.TUNING):
return None
if self == self.VALIDATING:
return "val"
return self.value
@dataclass
class TrainerState:
"""Dataclass to encapsulate the current :class:`~pytorch_lightning.trainer.trainer.Trainer` state."""
status: TrainerStatus = TrainerStatus.INITIALIZING
fn: Optional[TrainerFn] = None
stage: Optional[RunningStage] = None
# detect the fault tolerant flag
_fault_tolerant_mode: _FaultTolerantMode = field(default_factory=_FaultTolerantMode.detect_current_mode)
@property
def finished(self) -> bool:
return self.status == TrainerStatus.FINISHED
@property
def stopped(self) -> bool:
return self.status.stopped