lightning/tests/callbacks/test_pruning.py

346 lines
14 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
from collections import OrderedDict
from logging import INFO
from typing import Union
import pytest
import torch
import torch.nn.utils.prune as pytorch_prune
from torch import nn
from torch.nn import Sequential
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint, ModelPruning
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from tests.helpers.boring_model import BoringModel
from tests.helpers.runif import RunIf
class TestModel(BoringModel):
test_step = None
def __init__(self):
super().__init__()
self.layer = Sequential(
OrderedDict(
[("mlp_1", nn.Linear(32, 32)), ("mlp_2", nn.Linear(32, 32, bias=False)), ("mlp_3", nn.Linear(32, 2))]
)
)
def training_step(self, batch, batch_idx):
self.log("test", -batch_idx)
return super().training_step(batch, batch_idx)
class TestPruningMethod(pytorch_prune.BasePruningMethod):
PRUNING_TYPE = "unstructured"
def compute_mask(self, _, default_mask):
mask = default_mask.clone()
# Prune every other entry in a tensor
mask.view(-1)[::2] = 0
return mask
@classmethod
def apply(cls, module, name, amount):
return super().apply(module, name, amount=amount)
def train_with_pruning_callback(
tmpdir,
parameters_to_prune=False,
use_global_unstructured=False,
pruning_fn="l1_unstructured",
use_lottery_ticket_hypothesis=False,
accelerator=None,
gpus=None,
num_processes=1,
):
model = TestModel()
# Weights are random. None is 0
assert torch.all(model.layer.mlp_2.weight != 0)
pruning_kwargs = {
"pruning_fn": pruning_fn,
"amount": 0.3,
"use_global_unstructured": use_global_unstructured,
"use_lottery_ticket_hypothesis": use_lottery_ticket_hypothesis,
"verbose": 1,
}
if parameters_to_prune:
pruning_kwargs["parameters_to_prune"] = [(model.layer.mlp_1, "weight"), (model.layer.mlp_2, "weight")]
else:
if isinstance(pruning_fn, str) and pruning_fn.endswith("_structured"):
pruning_kwargs["parameter_names"] = ["weight"]
else:
pruning_kwargs["parameter_names"] = ["weight", "bias"]
if isinstance(pruning_fn, str) and pruning_fn.endswith("_structured"):
pruning_kwargs["pruning_dim"] = 0
if pruning_fn == "ln_structured":
pruning_kwargs["pruning_norm"] = 1
# Misconfiguration checks
if isinstance(pruning_fn, str) and pruning_fn.endswith("_structured") and use_global_unstructured:
with pytest.raises(MisconfigurationException, match="is supported with `use_global_unstructured=True`"):
ModelPruning(**pruning_kwargs)
return
if ModelPruning._is_pruning_method(pruning_fn) and not use_global_unstructured:
with pytest.raises(MisconfigurationException, match="currently only supported with"):
ModelPruning(**pruning_kwargs)
return
pruning = ModelPruning(**pruning_kwargs)
trainer = Trainer(
default_root_dir=tmpdir,
enable_progress_bar=False,
weights_summary=None,
checkpoint_callback=False,
logger=False,
limit_train_batches=10,
limit_val_batches=2,
max_epochs=10,
accelerator=accelerator,
gpus=gpus,
num_processes=num_processes,
callbacks=pruning,
)
trainer.fit(model)
trainer.test(model)
if not accelerator:
# Check some have been pruned
assert torch.any(model.layer.mlp_2.weight == 0)
def test_pruning_misconfiguration():
with pytest.raises(MisconfigurationException, match=r"chocolate isn't in \('weight', 'bias'\)"):
ModelPruning(pruning_fn="l1_unstructured", parameter_names=["chocolate"])
with pytest.raises(MisconfigurationException, match=r"expected to be a str in \["):
ModelPruning(pruning_fn={})
with pytest.raises(MisconfigurationException, match="should be provided"):
ModelPruning(pruning_fn="random_structured")
with pytest.raises(MisconfigurationException, match=r"must be any of \(0, 1, 2\)"):
ModelPruning(pruning_fn="l1_unstructured", verbose=3)
with pytest.raises(MisconfigurationException, match="requesting `ln_structured` pruning, the `pruning_norm`"):
ModelPruning(pruning_fn="ln_structured", pruning_dim=0)
@pytest.mark.parametrize("parameters_to_prune", [False, True])
@pytest.mark.parametrize("use_global_unstructured", [False, True])
@pytest.mark.parametrize(
"pruning_fn", ["l1_unstructured", "random_unstructured", "ln_structured", "random_structured", TestPruningMethod]
)
@pytest.mark.parametrize("use_lottery_ticket_hypothesis", [False, True])
def test_pruning_callback(
tmpdir,
use_global_unstructured: bool,
parameters_to_prune: bool,
pruning_fn: Union[str, pytorch_prune.BasePruningMethod],
use_lottery_ticket_hypothesis: bool,
):
train_with_pruning_callback(
tmpdir,
parameters_to_prune=parameters_to_prune,
use_global_unstructured=use_global_unstructured,
pruning_fn=pruning_fn,
use_lottery_ticket_hypothesis=use_lottery_ticket_hypothesis,
)
@RunIf(special=True, min_gpus=2)
def test_pruning_callback_ddp_0(tmpdir):
train_with_pruning_callback(
tmpdir, parameters_to_prune=False, use_global_unstructured=False, accelerator="ddp", gpus=2
)
@RunIf(special=True, min_gpus=2)
def test_pruning_callback_ddp_1(tmpdir):
train_with_pruning_callback(
tmpdir, parameters_to_prune=False, use_global_unstructured=True, accelerator="ddp", gpus=2
)
@RunIf(special=True, min_gpus=2)
def test_pruning_callback_ddp_2(tmpdir):
train_with_pruning_callback(
tmpdir, parameters_to_prune=True, use_global_unstructured=False, accelerator="ddp", gpus=2
)
@RunIf(special=True, min_gpus=2)
def test_pruning_callback_ddp_3(tmpdir):
train_with_pruning_callback(
tmpdir, parameters_to_prune=True, use_global_unstructured=True, accelerator="ddp", gpus=2
)
@RunIf(min_gpus=2, skip_windows=True)
def test_pruning_callback_ddp_spawn(tmpdir):
train_with_pruning_callback(tmpdir, use_global_unstructured=True, accelerator="ddp_spawn", gpus=2)
@RunIf(skip_windows=True)
def test_pruning_callback_ddp_cpu(tmpdir):
train_with_pruning_callback(tmpdir, parameters_to_prune=True, accelerator="ddp_cpu", num_processes=2)
@pytest.mark.parametrize("resample_parameters", (False, True))
def test_pruning_lth_callable(tmpdir, resample_parameters: bool):
model = TestModel()
class ModelPruningTestCallback(ModelPruning):
lth_calls = 0
def apply_lottery_ticket_hypothesis(self):
super().apply_lottery_ticket_hypothesis()
self.lth_calls += 1
for d in self._original_layers.values():
copy, names = d["data"], d["names"]
for i, name in names:
curr, curr_name = self._parameters_to_prune[i]
assert name == curr_name
actual, expected = getattr(curr, name).data, getattr(copy, name).data
allclose = torch.allclose(actual, expected)
assert not allclose if self._resample_parameters else allclose
pruning = ModelPruningTestCallback(
"l1_unstructured", use_lottery_ticket_hypothesis=lambda e: bool(e % 2), resample_parameters=resample_parameters
)
trainer = Trainer(
default_root_dir=tmpdir,
enable_progress_bar=False,
weights_summary=None,
checkpoint_callback=False,
logger=False,
limit_train_batches=10,
limit_val_batches=2,
max_epochs=5,
callbacks=pruning,
)
trainer.fit(model)
assert pruning.lth_calls == trainer.max_epochs // 2
@pytest.mark.parametrize("make_pruning_permanent", (False, True))
def test_multiple_pruning_callbacks(tmpdir, caplog, make_pruning_permanent: bool):
model = TestModel()
pruning_kwargs = {
"parameters_to_prune": [(model.layer.mlp_1, "weight"), (model.layer.mlp_3, "weight")],
"verbose": 2,
"make_pruning_permanent": make_pruning_permanent,
}
p1 = ModelPruning("l1_unstructured", amount=0.5, apply_pruning=lambda e: not e % 2, **pruning_kwargs)
p2 = ModelPruning("random_unstructured", amount=0.25, apply_pruning=lambda e: e % 2, **pruning_kwargs)
trainer = Trainer(
default_root_dir=tmpdir,
enable_progress_bar=False,
weights_summary=None,
checkpoint_callback=False,
logger=False,
limit_train_batches=10,
limit_val_batches=2,
max_epochs=3,
callbacks=[p1, p2],
)
with caplog.at_level(INFO):
trainer.fit(model)
actual = [m.strip() for m in caplog.messages]
actual = [m for m in actual if m.startswith("Applied")]
percentage = r"\(\d+(?:\.\d+)?%\)"
expected = [
rf"Applied `L1Unstructured`. Pruned: \d+\/1122 {percentage} -> \d+\/1122 {percentage}",
rf"Applied `L1Unstructured` to `Linear\(in_features=32, out_features=32, bias=True\).weight` with amount=0.5. Pruned: 0 \(0.00%\) -> \d+ {percentage}", # noqa: E501
rf"Applied `L1Unstructured` to `Linear\(in_features=32, out_features=2, bias=True\).weight` with amount=0.5. Pruned: 0 \(0.00%\) -> \d+ {percentage}", # noqa: E501
rf"Applied `RandomUnstructured`. Pruned: \d+\/1122 {percentage} -> \d+\/1122 {percentage}",
rf"Applied `RandomUnstructured` to `Linear\(in_features=32, out_features=32, bias=True\).weight` with amount=0.25. Pruned: \d+ {percentage} -> \d+ {percentage}", # noqa: E501
rf"Applied `RandomUnstructured` to `Linear\(in_features=32, out_features=2, bias=True\).weight` with amount=0.25. Pruned: \d+ {percentage} -> \d+ {percentage}", # noqa: E501
rf"Applied `L1Unstructured`. Pruned: \d+\/1122 {percentage} -> \d+\/1122 {percentage}",
rf"Applied `L1Unstructured` to `Linear\(in_features=32, out_features=32, bias=True\).weight` with amount=0.5. Pruned: \d+ {percentage} -> \d+ {percentage}", # noqa: E501
rf"Applied `L1Unstructured` to `Linear\(in_features=32, out_features=2, bias=True\).weight` with amount=0.5. Pruned: \d+ {percentage} -> \d+ {percentage}", # noqa: E501
]
expected = [re.compile(s) for s in expected]
assert all(regex.match(s) for s, regex in zip(actual, expected))
filepath = str(tmpdir / "foo.ckpt")
trainer.save_checkpoint(filepath)
model.load_from_checkpoint(filepath, strict=False)
has_pruning = hasattr(model.layer.mlp_1, "weight_orig")
assert not has_pruning if make_pruning_permanent else has_pruning
@pytest.mark.parametrize("prune_on_train_epoch_end", (False, True))
@pytest.mark.parametrize("save_on_train_epoch_end", (False, True))
def test_permanent_when_model_is_saved_multiple_times(
tmpdir, caplog, prune_on_train_epoch_end, save_on_train_epoch_end
):
"""When a model is saved multiple times and make_permanent=True, we need to make sure a copy is pruned and not
the trained model if we want to continue with the same pruning buffers."""
if prune_on_train_epoch_end and save_on_train_epoch_end:
pytest.xfail(
"Pruning sets the `grad_fn` of the parameters so we can't save"
" right after as pruning has not been made permanent"
)
class TestPruning(ModelPruning):
def on_save_checkpoint(self, trainer, pl_module, checkpoint):
had_buffers = hasattr(pl_module.layer.mlp_3, "weight_orig")
super().on_save_checkpoint(trainer, pl_module, checkpoint)
assert "layer.mlp_3.weight_orig" not in checkpoint["state_dict"]
if had_buffers:
assert hasattr(pl_module.layer.mlp_3, "weight_orig")
model = TestModel()
pruning_callback = TestPruning(
"random_unstructured",
parameters_to_prune=[(model.layer.mlp_3, "weight")],
verbose=1,
make_pruning_permanent=True,
prune_on_train_epoch_end=prune_on_train_epoch_end,
)
ckpt_callback = ModelCheckpoint(
monitor="test", save_top_k=2, save_last=True, save_on_train_epoch_end=save_on_train_epoch_end
)
trainer = Trainer(callbacks=[pruning_callback, ckpt_callback], max_epochs=3, enable_progress_bar=False)
with caplog.at_level(INFO):
trainer.fit(model)
actual = [m.strip() for m in caplog.messages]
actual = [m for m in actual if m.startswith("Applied")]
percentage = r"\(\d+(?:\.\d+)?%\)"
expected = [
rf"Applied `RandomUnstructured`. Pruned: \d+\/66 {percentage} -> \d+\/66 {percentage}",
rf"Applied `RandomUnstructured`. Pruned: \d+\/66 {percentage} -> \d+\/66 {percentage}",
rf"Applied `RandomUnstructured`. Pruned: \d+\/66 {percentage} -> \d+\/66 {percentage}",
]
expected = [re.compile(s) for s in expected]
assert all(regex.match(s) for s, regex in zip(actual, expected))
# removed on_train_end
assert not hasattr(model.layer.mlp_3, "weight_orig")
model.load_from_checkpoint(trainer.checkpoint_callback.kth_best_model_path)
assert not hasattr(model.layer.mlp_3, "weight_orig")
model.load_from_checkpoint(trainer.checkpoint_callback.last_model_path)
assert not hasattr(model.layer.mlp_3, "weight_orig")