135 lines
4.3 KiB
Python
135 lines
4.3 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""MNIST backbone image classifier example.
|
|
|
|
To run: python backbone_image_classifier.py --trainer.max_epochs=50
|
|
"""
|
|
from typing import Optional
|
|
|
|
import torch
|
|
from torch.nn import functional as F
|
|
from torch.utils.data import DataLoader, random_split
|
|
|
|
import pytorch_lightning as pl
|
|
from pl_examples import _DATASETS_PATH, cli_lightning_logo
|
|
from pl_examples.basic_examples.mnist_datamodule import MNIST
|
|
from pytorch_lightning.utilities.cli import LightningCLI
|
|
from pytorch_lightning.utilities.imports import _TORCHVISION_AVAILABLE
|
|
|
|
if _TORCHVISION_AVAILABLE:
|
|
from torchvision import transforms
|
|
|
|
|
|
class Backbone(torch.nn.Module):
|
|
"""
|
|
>>> Backbone() # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
|
|
Backbone(
|
|
(l1): Linear(...)
|
|
(l2): Linear(...)
|
|
)
|
|
"""
|
|
|
|
def __init__(self, hidden_dim=128):
|
|
super().__init__()
|
|
self.l1 = torch.nn.Linear(28 * 28, hidden_dim)
|
|
self.l2 = torch.nn.Linear(hidden_dim, 10)
|
|
|
|
def forward(self, x):
|
|
x = x.view(x.size(0), -1)
|
|
x = torch.relu(self.l1(x))
|
|
x = torch.relu(self.l2(x))
|
|
return x
|
|
|
|
|
|
class LitClassifier(pl.LightningModule):
|
|
"""
|
|
>>> LitClassifier(Backbone()) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
|
|
LitClassifier(
|
|
(backbone): ...
|
|
)
|
|
"""
|
|
|
|
def __init__(self, backbone: Optional[Backbone] = None, learning_rate: float = 0.0001):
|
|
super().__init__()
|
|
self.save_hyperparameters(ignore=["backbone"])
|
|
if backbone is None:
|
|
backbone = Backbone()
|
|
self.backbone = backbone
|
|
|
|
def forward(self, x):
|
|
# use forward for inference/predictions
|
|
embedding = self.backbone(x)
|
|
return embedding
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
x, y = batch
|
|
y_hat = self(x)
|
|
loss = F.cross_entropy(y_hat, y)
|
|
self.log("train_loss", loss, on_epoch=True)
|
|
return loss
|
|
|
|
def validation_step(self, batch, batch_idx):
|
|
x, y = batch
|
|
y_hat = self(x)
|
|
loss = F.cross_entropy(y_hat, y)
|
|
self.log("valid_loss", loss, on_step=True)
|
|
|
|
def test_step(self, batch, batch_idx):
|
|
x, y = batch
|
|
y_hat = self(x)
|
|
loss = F.cross_entropy(y_hat, y)
|
|
self.log("test_loss", loss)
|
|
|
|
def predict_step(self, batch, batch_idx, dataloader_idx=None):
|
|
x, y = batch
|
|
return self(x)
|
|
|
|
def configure_optimizers(self):
|
|
# self.hparams available because we called self.save_hyperparameters()
|
|
return torch.optim.Adam(self.parameters(), lr=self.hparams.learning_rate)
|
|
|
|
|
|
class MyDataModule(pl.LightningDataModule):
|
|
def __init__(self, batch_size: int = 32):
|
|
super().__init__()
|
|
dataset = MNIST(_DATASETS_PATH, train=True, download=True, transform=transforms.ToTensor())
|
|
self.mnist_test = MNIST(_DATASETS_PATH, train=False, download=True, transform=transforms.ToTensor())
|
|
self.mnist_train, self.mnist_val = random_split(dataset, [55000, 5000])
|
|
self.batch_size = batch_size
|
|
|
|
def train_dataloader(self):
|
|
return DataLoader(self.mnist_train, batch_size=self.batch_size)
|
|
|
|
def val_dataloader(self):
|
|
return DataLoader(self.mnist_val, batch_size=self.batch_size)
|
|
|
|
def test_dataloader(self):
|
|
return DataLoader(self.mnist_test, batch_size=self.batch_size)
|
|
|
|
def predict_dataloader(self):
|
|
return DataLoader(self.mnist_test, batch_size=self.batch_size)
|
|
|
|
|
|
def cli_main():
|
|
cli = LightningCLI(LitClassifier, MyDataModule, seed_everything_default=1234, save_config_overwrite=True, run=False)
|
|
cli.trainer.fit(cli.model, datamodule=cli.datamodule)
|
|
cli.trainer.test(ckpt_path="best", datamodule=cli.datamodule)
|
|
predictions = cli.trainer.predict(ckpt_path="best", datamodule=cli.datamodule)
|
|
print(predictions[0])
|
|
|
|
|
|
if __name__ == "__main__":
|
|
cli_lightning_logo()
|
|
cli_main()
|