192 lines
6.8 KiB
Python
192 lines
6.8 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""MNIST autoencoder example.
|
|
|
|
To run: python autoencoder.py --trainer.max_epochs=50
|
|
"""
|
|
from typing import Optional, Tuple
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from torch import nn
|
|
from torch.utils.data import DataLoader, random_split
|
|
|
|
import pytorch_lightning as pl
|
|
from pl_examples import _DATASETS_PATH, cli_lightning_logo
|
|
from pl_examples.basic_examples.mnist_datamodule import MNIST
|
|
from pytorch_lightning.utilities import rank_zero_only
|
|
from pytorch_lightning.utilities.cli import LightningCLI
|
|
from pytorch_lightning.utilities.imports import _TORCHVISION_AVAILABLE
|
|
|
|
if _TORCHVISION_AVAILABLE:
|
|
import torchvision
|
|
from torchvision import transforms
|
|
from torchvision.utils import save_image
|
|
|
|
|
|
class ImageSampler(pl.callbacks.Callback):
|
|
def __init__(
|
|
self,
|
|
num_samples: int = 3,
|
|
nrow: int = 8,
|
|
padding: int = 2,
|
|
normalize: bool = True,
|
|
norm_range: Optional[Tuple[int, int]] = None,
|
|
scale_each: bool = False,
|
|
pad_value: int = 0,
|
|
) -> None:
|
|
"""
|
|
Args:
|
|
num_samples: Number of images displayed in the grid. Default: ``3``.
|
|
nrow: Number of images displayed in each row of the grid.
|
|
The final grid size is ``(B / nrow, nrow)``. Default: ``8``.
|
|
padding: Amount of padding. Default: ``2``.
|
|
normalize: If ``True``, shift the image to the range (0, 1),
|
|
by the min and max values specified by :attr:`range`. Default: ``False``.
|
|
norm_range: Tuple (min, max) where min and max are numbers,
|
|
then these numbers are used to normalize the image. By default, min and max
|
|
are computed from the tensor.
|
|
scale_each: If ``True``, scale each image in the batch of
|
|
images separately rather than the (min, max) over all images. Default: ``False``.
|
|
pad_value: Value for the padded pixels. Default: ``0``.
|
|
"""
|
|
if not _TORCHVISION_AVAILABLE: # pragma: no cover
|
|
raise ModuleNotFoundError("You want to use `torchvision` which is not installed yet.")
|
|
|
|
super().__init__()
|
|
self.num_samples = num_samples
|
|
self.nrow = nrow
|
|
self.padding = padding
|
|
self.normalize = normalize
|
|
self.norm_range = norm_range
|
|
self.scale_each = scale_each
|
|
self.pad_value = pad_value
|
|
|
|
def _to_grid(self, images):
|
|
return torchvision.utils.make_grid(
|
|
tensor=images,
|
|
nrow=self.nrow,
|
|
padding=self.padding,
|
|
normalize=self.normalize,
|
|
range=self.norm_range,
|
|
scale_each=self.scale_each,
|
|
pad_value=self.pad_value,
|
|
)
|
|
|
|
@rank_zero_only
|
|
def on_epoch_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule) -> None:
|
|
if not _TORCHVISION_AVAILABLE:
|
|
return
|
|
|
|
images, _ = next(iter(DataLoader(trainer.datamodule.mnist_val, batch_size=self.num_samples)))
|
|
images_flattened = images.view(images.size(0), -1)
|
|
|
|
# generate images
|
|
with torch.no_grad():
|
|
pl_module.eval()
|
|
images_generated = pl_module(images_flattened.to(pl_module.device))
|
|
pl_module.train()
|
|
|
|
if trainer.current_epoch == 0:
|
|
save_image(self._to_grid(images), f"grid_ori_{trainer.current_epoch}.png")
|
|
save_image(self._to_grid(images_generated.reshape(images.shape)), f"grid_generated_{trainer.current_epoch}.png")
|
|
|
|
|
|
class LitAutoEncoder(pl.LightningModule):
|
|
"""
|
|
>>> LitAutoEncoder() # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
|
|
LitAutoEncoder(
|
|
(encoder): ...
|
|
(decoder): ...
|
|
)
|
|
"""
|
|
|
|
def __init__(self, hidden_dim: int = 64):
|
|
super().__init__()
|
|
self.encoder = nn.Sequential(nn.Linear(28 * 28, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, 3))
|
|
self.decoder = nn.Sequential(nn.Linear(3, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, 28 * 28))
|
|
|
|
def forward(self, x):
|
|
z = self.encoder(x)
|
|
x_hat = self.decoder(z)
|
|
return x_hat
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
return self._common_step(batch, batch_idx, "train")
|
|
|
|
def validation_step(self, batch, batch_idx):
|
|
self._common_step(batch, batch_idx, "val")
|
|
|
|
def test_step(self, batch, batch_idx):
|
|
self._common_step(batch, batch_idx, "test")
|
|
|
|
def predict_step(self, batch, batch_idx, dataloader_idx=None):
|
|
x = self._prepare_batch(batch)
|
|
return self(x)
|
|
|
|
def configure_optimizers(self):
|
|
optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)
|
|
return optimizer
|
|
|
|
def _prepare_batch(self, batch):
|
|
x, _ = batch
|
|
return x.view(x.size(0), -1)
|
|
|
|
def _common_step(self, batch, batch_idx, stage: str):
|
|
x = self._prepare_batch(batch)
|
|
loss = F.mse_loss(x, self(x))
|
|
self.log(f"{stage}_loss", loss, on_step=True)
|
|
return loss
|
|
|
|
|
|
class MyDataModule(pl.LightningDataModule):
|
|
def __init__(self, batch_size: int = 32):
|
|
super().__init__()
|
|
dataset = MNIST(_DATASETS_PATH, train=True, download=True, transform=transforms.ToTensor())
|
|
self.mnist_test = MNIST(_DATASETS_PATH, train=False, download=True, transform=transforms.ToTensor())
|
|
self.mnist_train, self.mnist_val = random_split(dataset, [55000, 5000])
|
|
self.batch_size = batch_size
|
|
|
|
def train_dataloader(self):
|
|
return DataLoader(self.mnist_train, batch_size=self.batch_size)
|
|
|
|
def val_dataloader(self):
|
|
return DataLoader(self.mnist_val, batch_size=self.batch_size)
|
|
|
|
def test_dataloader(self):
|
|
return DataLoader(self.mnist_test, batch_size=self.batch_size)
|
|
|
|
def predict_dataloader(self):
|
|
return DataLoader(self.mnist_test, batch_size=self.batch_size)
|
|
|
|
|
|
def cli_main():
|
|
cli = LightningCLI(
|
|
LitAutoEncoder,
|
|
MyDataModule,
|
|
seed_everything_default=1234,
|
|
save_config_overwrite=True,
|
|
run=False, # used to de-activate automatic fitting.
|
|
trainer_defaults={"callbacks": ImageSampler(), "max_epochs": 10},
|
|
)
|
|
cli.trainer.fit(cli.model, datamodule=cli.datamodule)
|
|
cli.trainer.test(ckpt_path="best", datamodule=cli.datamodule)
|
|
predictions = cli.trainer.predict(ckpt_path="best", datamodule=cli.datamodule)
|
|
print(predictions[0])
|
|
|
|
|
|
if __name__ == "__main__":
|
|
cli_lightning_logo()
|
|
cli_main()
|