lightning/pytorch_lightning/tuner/lr_finder.py

426 lines
15 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib
import logging
import os
import uuid
from functools import wraps
from typing import Any, Dict, Optional, Sequence
import numpy as np
import torch
from torch.optim.lr_scheduler import _LRScheduler
import pytorch_lightning as pl
from pytorch_lightning.callbacks import Callback
from pytorch_lightning.core.optimizer import _init_optimizers_and_lr_schedulers, _set_scheduler_opt_idx
from pytorch_lightning.loggers.base import DummyLogger
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.utilities.parsing import lightning_hasattr, lightning_setattr
from pytorch_lightning.utilities.rank_zero import rank_zero_warn
from pytorch_lightning.utilities.types import LRSchedulerConfig
# check if ipywidgets is installed before importing tqdm.auto
# to ensure it won't fail and a progress bar is displayed
if importlib.util.find_spec("ipywidgets") is not None:
from tqdm.auto import tqdm
else:
from tqdm import tqdm
log = logging.getLogger(__name__)
def _determine_lr_attr_name(trainer: "pl.Trainer", model: "pl.LightningModule") -> str:
if isinstance(trainer.auto_lr_find, str):
if not lightning_hasattr(model, trainer.auto_lr_find):
raise MisconfigurationException(
f"`auto_lr_find` was set to {trainer.auto_lr_find}, however"
" could not find this as a field in `model` or `model.hparams`."
)
return trainer.auto_lr_find
attr_options = ("lr", "learning_rate")
for attr in attr_options:
if lightning_hasattr(model, attr):
return attr
raise MisconfigurationException(
"When `auto_lr_find=True`, either `model` or `model.hparams` should"
f" have one of these fields: {attr_options} overridden."
)
class _LRFinder:
"""LR finder object. This object stores the results of lr_find().
Args:
mode: either `linear` or `exponential`, how to increase lr after each step
lr_min: lr to start search from
lr_max: lr to stop search
num_training: number of steps to take between lr_min and lr_max
Example::
# Run lr finder
lr_finder = trainer.lr_find(model)
# Results stored in
lr_finder.results
# Plot using
lr_finder.plot()
# Get suggestion
lr = lr_finder.suggestion()
"""
def __init__(self, mode: str, lr_min: float, lr_max: float, num_training: int):
assert mode in ("linear", "exponential"), "mode should be either `linear` or `exponential`"
self.mode = mode
self.lr_min = lr_min
self.lr_max = lr_max
self.num_training = num_training
self.results = {}
self._total_batch_idx = 0 # for debug purpose
def _exchange_scheduler(self, trainer: "pl.Trainer", model: "pl.LightningModule"):
"""Decorate `trainer.strategy.setup_optimizers` method such that it sets the user's originally specified
optimizer together with a new scheduler that takes care of the learning rate search."""
setup_optimizers = trainer.strategy.setup_optimizers
@wraps(setup_optimizers)
def func(trainer):
# Decide the structure of the output from _init_optimizers_and_lr_schedulers
optimizers, _, _ = _init_optimizers_and_lr_schedulers(trainer.lightning_module)
if len(optimizers) != 1:
raise MisconfigurationException(
f"`model.configure_optimizers()` returned {len(optimizers)}, but"
" learning rate finder only works with single optimizer"
)
optimizer = optimizers[0]
new_lrs = [self.lr_min] * len(optimizer.param_groups)
for param_group, new_lr in zip(optimizer.param_groups, new_lrs):
param_group["lr"] = new_lr
param_group["initial_lr"] = new_lr
args = (optimizer, self.lr_max, self.num_training)
scheduler = _LinearLR(*args) if self.mode == "linear" else _ExponentialLR(*args)
trainer.strategy.optimizers = [optimizer]
trainer.strategy.lr_scheduler_configs = [LRSchedulerConfig(scheduler, interval="step", opt_idx=0)]
trainer.strategy.optimizer_frequencies = []
_set_scheduler_opt_idx(trainer.optimizers, trainer.lr_scheduler_configs)
return func
def plot(self, suggest: bool = False, show: bool = False):
"""Plot results from lr_find run
Args:
suggest: if True, will mark suggested lr to use with a red point
show: if True, will show figure
"""
import matplotlib.pyplot as plt
lrs = self.results["lr"]
losses = self.results["loss"]
fig, ax = plt.subplots()
# Plot loss as a function of the learning rate
ax.plot(lrs, losses)
if self.mode == "exponential":
ax.set_xscale("log")
ax.set_xlabel("Learning rate")
ax.set_ylabel("Loss")
if suggest:
_ = self.suggestion()
if self._optimal_idx:
ax.plot(lrs[self._optimal_idx], losses[self._optimal_idx], markersize=10, marker="o", color="red")
if show:
plt.show()
return fig
def suggestion(self, skip_begin: int = 10, skip_end: int = 1):
"""This will propose a suggestion for choice of initial learning rate as the point with the steepest
negative gradient.
Returns:
lr: suggested initial learning rate to use
skip_begin: how many samples to skip in the beginning. Prevent too naive estimates
skip_end: how many samples to skip in the end. Prevent too optimistic estimates
"""
try:
loss = np.array(self.results["loss"][skip_begin:-skip_end])
loss = loss[np.isfinite(loss)]
min_grad = np.gradient(loss).argmin()
self._optimal_idx = min_grad + skip_begin
return self.results["lr"][self._optimal_idx]
# todo: specify the possible exception
except Exception:
log.exception("Failed to compute suggesting for `lr`. There might not be enough points.")
self._optimal_idx = None
def lr_find(
trainer: "pl.Trainer",
model: "pl.LightningModule",
min_lr: float = 1e-8,
max_lr: float = 1,
num_training: int = 100,
mode: str = "exponential",
early_stop_threshold: float = 4.0,
update_attr: bool = False,
) -> Optional[_LRFinder]:
"""See :meth:`~pytorch_lightning.tuner.tuning.Tuner.lr_find`"""
if trainer.fast_dev_run:
rank_zero_warn("Skipping learning rate finder since fast_dev_run is enabled.")
return
# Determine lr attr
if update_attr:
lr_attr_name = _determine_lr_attr_name(trainer, model)
# Save initial model, that is loaded after learning rate is found
ckpt_path = os.path.join(trainer.default_root_dir, f".lr_find_{uuid.uuid4()}.ckpt")
trainer.save_checkpoint(ckpt_path)
params = __lr_finder_dump_params(trainer)
# Set to values that are required by the algorithm
__lr_finder_reset_params(trainer, num_training, early_stop_threshold)
# Initialize lr finder object (stores results)
lr_finder = _LRFinder(mode, min_lr, max_lr, num_training)
# Disable standard progress bar for fit
if trainer.progress_bar_callback:
trainer.progress_bar_callback.disable()
# Configure optimizer and scheduler
trainer.strategy.setup_optimizers = lr_finder._exchange_scheduler(trainer, model)
# Fit, lr & loss logged in callback
trainer.tuner._run(model)
# Prompt if we stopped early
if trainer.global_step != num_training:
log.info(f"LR finder stopped early after {trainer.global_step} steps due to diverging loss.")
# Transfer results from callback to lr finder object
lr_finder.results.update({"lr": trainer.callbacks[0].lrs, "loss": trainer.callbacks[0].losses})
lr_finder._total_batch_idx = trainer.fit_loop.total_batch_idx # for debug purpose
# Restore initial state of model
trainer._checkpoint_connector.restore(ckpt_path)
trainer.strategy.remove_checkpoint(ckpt_path)
__lr_finder_restore_params(trainer, params)
if trainer.progress_bar_callback:
trainer.progress_bar_callback.enable()
# Update lr attr if required
if update_attr:
lr = lr_finder.suggestion()
# TODO: log lr.results to self.logger
lightning_setattr(model, lr_attr_name, lr)
log.info(f"Learning rate set to {lr}")
return lr_finder
def __lr_finder_dump_params(trainer: "pl.Trainer") -> Dict[str, Any]:
return {
"auto_lr_find": trainer.auto_lr_find,
"callbacks": trainer.callbacks,
"logger": trainer.logger,
"max_steps": trainer.fit_loop.max_steps,
}
def __lr_finder_reset_params(trainer: "pl.Trainer", num_training: int, early_stop_threshold: float) -> None:
# avoid lr find being called multiple times
trainer.auto_lr_find = False
# Use special lr logger callback
trainer.callbacks = [_LRCallback(num_training, early_stop_threshold, progress_bar_refresh_rate=1)]
# No logging
trainer.loggers = [DummyLogger()] if trainer.loggers else []
# Max step set to number of iterations
trainer.fit_loop.max_steps = num_training
def __lr_finder_restore_params(trainer: "pl.Trainer", params: Dict[str, Any]) -> None:
trainer.auto_lr_find = params["auto_lr_find"]
trainer.callbacks = params["callbacks"]
trainer.logger = params["logger"]
trainer.fit_loop.max_steps = params["max_steps"]
class _LRCallback(Callback):
"""Special callback used by the learning rate finder. This callbacks log the learning rate before each batch
and log the corresponding loss after each batch.
Args:
num_training: number of iterations done by the learning rate finder
early_stop_threshold: threshold for stopping the search. If the
loss at any point is larger than ``early_stop_threshold*best_loss``
then the search is stopped. To disable, set to ``None``.
progress_bar_refresh_rate: rate to refresh the progress bar for
the learning rate finder
beta: smoothing value, the loss being logged is a running average of
loss values logged until now. ``beta`` controls the forget rate i.e.
if ``beta=0`` all past information is ignored.
"""
def __init__(
self,
num_training: int,
early_stop_threshold: float = 4.0,
progress_bar_refresh_rate: int = 0,
beta: float = 0.98,
):
self.num_training = num_training
self.early_stop_threshold = early_stop_threshold
self.beta = beta
self.losses = []
self.lrs = []
self.avg_loss = 0.0
self.best_loss = 0.0
self.progress_bar_refresh_rate = progress_bar_refresh_rate
self.progress_bar = None
def on_train_batch_start(self, trainer, pl_module, batch, batch_idx):
"""Called before each training batch, logs the lr that will be used."""
if (trainer.fit_loop.batch_idx + 1) % trainer.accumulate_grad_batches != 0:
return
if self.progress_bar_refresh_rate and self.progress_bar is None:
self.progress_bar = tqdm(desc="Finding best initial lr", total=self.num_training)
self.lrs.append(trainer.lr_scheduler_configs[0].scheduler.lr[0])
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx):
"""Called when the training batch ends, logs the calculated loss."""
if (trainer.fit_loop.batch_idx + 1) % trainer.accumulate_grad_batches != 0:
return
if self.progress_bar:
self.progress_bar.update()
current_loss = trainer.fit_loop.running_loss.last().item()
current_step = trainer.global_step
# Avg loss (loss with momentum) + smoothing
self.avg_loss = self.beta * self.avg_loss + (1 - self.beta) * current_loss
smoothed_loss = self.avg_loss / (1 - self.beta ** (current_step + 1))
# Check if we diverging
if self.early_stop_threshold is not None:
if current_step > 1 and smoothed_loss > self.early_stop_threshold * self.best_loss:
trainer.fit_loop.max_steps = current_step # stop signal
if self.progress_bar:
self.progress_bar.close()
# Save best loss for diverging checking
if smoothed_loss < self.best_loss or current_step == 1:
self.best_loss = smoothed_loss
self.losses.append(smoothed_loss)
class _LinearLR(_LRScheduler):
"""Linearly increases the learning rate between two boundaries over a number of iterations.
Args:
optimizer: wrapped optimizer.
end_lr: the final learning rate.
num_iter: the number of iterations over which the test occurs.
last_epoch: the index of last epoch. Default: -1.
"""
last_epoch: int
base_lrs: Sequence
def __init__(self, optimizer: torch.optim.Optimizer, end_lr: float, num_iter: int, last_epoch: int = -1):
self.end_lr = end_lr
self.num_iter = num_iter
super().__init__(optimizer, last_epoch)
def get_lr(self):
curr_iter = self.last_epoch + 1
r = curr_iter / self.num_iter
if self.last_epoch > 0:
val = [base_lr + r * (self.end_lr - base_lr) for base_lr in self.base_lrs]
else:
val = [base_lr for base_lr in self.base_lrs]
self._lr = val
return val
@property
def lr(self):
return self._lr
class _ExponentialLR(_LRScheduler):
"""Exponentially increases the learning rate between two boundaries over a number of iterations.
Arguments:
optimizer: wrapped optimizer.
end_lr: the final learning rate.
num_iter: the number of iterations over which the test occurs.
last_epoch: the index of last epoch. Default: -1.
"""
last_epoch: int
base_lrs: Sequence
def __init__(self, optimizer: torch.optim.Optimizer, end_lr: float, num_iter: int, last_epoch: int = -1):
self.end_lr = end_lr
self.num_iter = num_iter
super().__init__(optimizer, last_epoch)
def get_lr(self):
curr_iter = self.last_epoch + 1
r = curr_iter / self.num_iter
if self.last_epoch > 0:
val = [base_lr * (self.end_lr / base_lr) ** r for base_lr in self.base_lrs]
else:
val = [base_lr for base_lr in self.base_lrs]
self._lr = val
return val
@property
def lr(self):
return self._lr