lightning/pytorch_lightning/accelerators/hpu.py

70 lines
2.4 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, List, Optional, Union
import torch
from pytorch_lightning.accelerators.accelerator import Accelerator
from pytorch_lightning.utilities import _HPU_AVAILABLE, device_parser
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.utilities.rank_zero import rank_zero_debug
class HPUAccelerator(Accelerator):
"""Accelerator for HPU devices."""
def setup_environment(self, root_device: torch.device) -> None:
"""
Raises:
MisconfigurationException:
If the selected device is not HPU.
"""
super().setup_environment(root_device)
if root_device.type != "hpu":
raise MisconfigurationException(f"Device should be HPU, got {root_device} instead.")
def get_device_stats(self, device: Union[str, torch.device]) -> Dict[str, Any]:
"""HPU device stats aren't supported yet."""
rank_zero_debug("HPU device stats aren't supported yet.")
return {}
@staticmethod
def parse_devices(devices: Union[int, str, List[int]]) -> Optional[int]:
"""Accelerator device parsing logic."""
return device_parser.parse_hpus(devices)
@staticmethod
def get_parallel_devices(devices: int) -> List[torch.device]:
"""Gets parallel devices for the Accelerator."""
return [torch.device("hpu")] * devices
@staticmethod
def auto_device_count() -> int:
"""Get the devices when set to auto."""
# TODO(@kaushikb11): Update this when api is exposed by the Habana team
return 8
@staticmethod
def is_available() -> bool:
return _HPU_AVAILABLE
@classmethod
def register_accelerators(cls, accelerator_registry: Dict) -> None:
accelerator_registry.register(
"hpu",
cls,
description=f"{cls.__class__.__name__}",
)