203 lines
7.1 KiB
Python
203 lines
7.1 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from abc import ABC
|
|
from random import shuffle
|
|
from warnings import warn
|
|
|
|
import numpy as np
|
|
import torch
|
|
from packaging.version import Version
|
|
from torch.nn import functional as F
|
|
from torch.utils.data import random_split
|
|
|
|
import pytorch_lightning as pl
|
|
from pl_examples import _DALI_AVAILABLE, _DATASETS_PATH, cli_lightning_logo
|
|
from pl_examples.basic_examples.mnist_datamodule import MNIST
|
|
from pytorch_lightning.utilities.cli import LightningCLI
|
|
from pytorch_lightning.utilities.imports import _TORCHVISION_AVAILABLE
|
|
|
|
if _TORCHVISION_AVAILABLE:
|
|
from torchvision import transforms
|
|
|
|
if _DALI_AVAILABLE:
|
|
from nvidia.dali import __version__ as dali_version
|
|
from nvidia.dali import ops
|
|
from nvidia.dali.pipeline import Pipeline
|
|
from nvidia.dali.plugin.pytorch import DALIClassificationIterator
|
|
|
|
NEW_DALI_API = Version(dali_version) >= Version("0.28.0")
|
|
if NEW_DALI_API:
|
|
from nvidia.dali.plugin.base_iterator import LastBatchPolicy
|
|
else:
|
|
warn("NVIDIA DALI is not available")
|
|
ops, Pipeline, DALIClassificationIterator, LastBatchPolicy = ..., ABC, ABC, ABC
|
|
|
|
|
|
class ExternalMNISTInputIterator:
|
|
"""This iterator class wraps torchvision's MNIST dataset and returns the images and labels in batches."""
|
|
|
|
def __init__(self, mnist_ds, batch_size):
|
|
self.batch_size = batch_size
|
|
self.mnist_ds = mnist_ds
|
|
self.indices = list(range(len(self.mnist_ds)))
|
|
shuffle(self.indices)
|
|
|
|
def __iter__(self):
|
|
self.i = 0
|
|
self.n = len(self.mnist_ds)
|
|
return self
|
|
|
|
def __next__(self):
|
|
batch = []
|
|
labels = []
|
|
for _ in range(self.batch_size):
|
|
index = self.indices[self.i]
|
|
img, label = self.mnist_ds[index]
|
|
batch.append(img.numpy())
|
|
labels.append(np.array([label], dtype=np.uint8))
|
|
self.i = (self.i + 1) % self.n
|
|
return (batch, labels)
|
|
|
|
|
|
class ExternalSourcePipeline(Pipeline):
|
|
"""This DALI pipeline class just contains the MNIST iterator."""
|
|
|
|
def __init__(self, batch_size, eii, num_threads, device_id):
|
|
super().__init__(batch_size, num_threads, device_id, seed=12)
|
|
self.source = ops.ExternalSource(source=eii, num_outputs=2)
|
|
self.build()
|
|
|
|
def define_graph(self):
|
|
images, labels = self.source()
|
|
return images, labels
|
|
|
|
|
|
class DALIClassificationLoader(DALIClassificationIterator):
|
|
"""This class extends DALI's original `DALIClassificationIterator` with the `__len__()` function so that we can
|
|
call `len()` on it."""
|
|
|
|
def __init__(
|
|
self,
|
|
pipelines,
|
|
size=-1,
|
|
reader_name=None,
|
|
auto_reset=False,
|
|
fill_last_batch=True,
|
|
dynamic_shape=False,
|
|
last_batch_padded=False,
|
|
):
|
|
if NEW_DALI_API:
|
|
last_batch_policy = LastBatchPolicy.FILL if fill_last_batch else LastBatchPolicy.DROP
|
|
super().__init__(
|
|
pipelines,
|
|
size,
|
|
reader_name,
|
|
auto_reset,
|
|
dynamic_shape,
|
|
last_batch_policy=last_batch_policy,
|
|
last_batch_padded=last_batch_padded,
|
|
)
|
|
else:
|
|
super().__init__(
|
|
pipelines, size, reader_name, auto_reset, fill_last_batch, dynamic_shape, last_batch_padded
|
|
)
|
|
self._fill_last_batch = fill_last_batch
|
|
|
|
def __len__(self):
|
|
batch_count = self._size // (self._num_gpus * self.batch_size)
|
|
last_batch = 1 if self._fill_last_batch else 1
|
|
return batch_count + last_batch
|
|
|
|
|
|
class LitClassifier(pl.LightningModule):
|
|
def __init__(self, hidden_dim: int = 128, learning_rate: float = 0.0001):
|
|
super().__init__()
|
|
self.save_hyperparameters()
|
|
|
|
self.l1 = torch.nn.Linear(28 * 28, self.hparams.hidden_dim)
|
|
self.l2 = torch.nn.Linear(self.hparams.hidden_dim, 10)
|
|
|
|
def forward(self, x):
|
|
x = x.view(x.size(0), -1)
|
|
x = torch.relu(self.l1(x))
|
|
x = torch.relu(self.l2(x))
|
|
return x
|
|
|
|
def split_batch(self, batch):
|
|
return batch[0]["data"], batch[0]["label"].squeeze().long()
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
x, y = self.split_batch(batch)
|
|
y_hat = self(x)
|
|
loss = F.cross_entropy(y_hat, y)
|
|
return loss
|
|
|
|
def validation_step(self, batch, batch_idx):
|
|
x, y = self.split_batch(batch)
|
|
y_hat = self(x)
|
|
loss = F.cross_entropy(y_hat, y)
|
|
self.log("valid_loss", loss)
|
|
|
|
def test_step(self, batch, batch_idx):
|
|
x, y = self.split_batch(batch)
|
|
y_hat = self(x)
|
|
loss = F.cross_entropy(y_hat, y)
|
|
self.log("test_loss", loss)
|
|
|
|
def configure_optimizers(self):
|
|
return torch.optim.Adam(self.parameters(), lr=self.hparams.learning_rate)
|
|
|
|
|
|
class MyDataModule(pl.LightningDataModule):
|
|
def __init__(self, batch_size: int = 32):
|
|
super().__init__()
|
|
dataset = MNIST(_DATASETS_PATH, train=True, download=True, transform=transforms.ToTensor())
|
|
self.mnist_test = MNIST(_DATASETS_PATH, train=False, download=True, transform=transforms.ToTensor())
|
|
self.mnist_train, self.mnist_val = random_split(dataset, [55000, 5000])
|
|
|
|
eii_train = ExternalMNISTInputIterator(self.mnist_train, batch_size)
|
|
eii_val = ExternalMNISTInputIterator(self.mnist_val, batch_size)
|
|
eii_test = ExternalMNISTInputIterator(self.mnist_test, batch_size)
|
|
|
|
self.pipe_train = ExternalSourcePipeline(batch_size=batch_size, eii=eii_train, num_threads=2, device_id=0)
|
|
self.pipe_val = ExternalSourcePipeline(batch_size=batch_size, eii=eii_val, num_threads=2, device_id=0)
|
|
self.pipe_test = ExternalSourcePipeline(batch_size=batch_size, eii=eii_test, num_threads=2, device_id=0)
|
|
|
|
def train_dataloader(self):
|
|
return DALIClassificationLoader(
|
|
self.pipe_train, size=len(self.mnist_train), auto_reset=True, fill_last_batch=True
|
|
)
|
|
|
|
def val_dataloader(self):
|
|
return DALIClassificationLoader(self.pipe_val, size=len(self.mnist_val), auto_reset=True, fill_last_batch=False)
|
|
|
|
def test_dataloader(self):
|
|
return DALIClassificationLoader(
|
|
self.pipe_test, size=len(self.mnist_test), auto_reset=True, fill_last_batch=False
|
|
)
|
|
|
|
|
|
def cli_main():
|
|
if not _DALI_AVAILABLE:
|
|
return
|
|
|
|
cli = LightningCLI(LitClassifier, MyDataModule, seed_everything_default=1234, save_config_overwrite=True, run=False)
|
|
cli.trainer.fit(cli.model, datamodule=cli.datamodule)
|
|
cli.trainer.test(ckpt_path="best", datamodule=cli.datamodule)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
cli_lightning_logo()
|
|
cli_main()
|