lightning/pl_examples/domain_templates/computer_vision_fine_tuning.py

291 lines
10 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Computer vision example on Transfer Learning. This computer vision example illustrates how one could fine-tune a
pre-trained network (by default, a ResNet50 is used) using pytorch-lightning. For the sake of this example, the
'cats and dogs dataset' (~60MB, see `DATA_URL` below) and the proposed network (denoted by `TransferLearningModel`,
see below) is trained for 15 epochs.
The training consists of three stages.
From epoch 0 to 4, the feature extractor (the pre-trained network) is frozen except
maybe for the BatchNorm layers (depending on whether `train_bn = True`). The BatchNorm
layers (if `train_bn = True`) and the parameters of the classifier are trained as a
single parameters group with lr = 1e-2.
From epoch 5 to 9, the last two layer groups of the pre-trained network are unfrozen
and added to the optimizer as a new parameter group with lr = 1e-4 (while lr = 1e-3
for the first parameter group in the optimizer).
Eventually, from epoch 10, all the remaining layer groups of the pre-trained network
are unfrozen and added to the optimizer as a third parameter group. From epoch 10,
the parameters of the pre-trained network are trained with lr = 1e-5 while those of
the classifier is trained with lr = 1e-4.
Note:
See: https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html
To run:
python computer_vision_fine_tuning.py fit
"""
import logging
from pathlib import Path
from typing import Union
import torch
import torch.nn.functional as F
from torch import nn, optim
from torch.optim.lr_scheduler import MultiStepLR
from torch.optim.optimizer import Optimizer
from torch.utils.data import DataLoader
from torchmetrics import Accuracy
from torchvision import models, transforms
from torchvision.datasets import ImageFolder
from torchvision.datasets.utils import download_and_extract_archive
import pytorch_lightning as pl
from pl_examples import cli_lightning_logo
from pytorch_lightning import LightningDataModule
from pytorch_lightning.callbacks.finetuning import BaseFinetuning
from pytorch_lightning.utilities.cli import LightningCLI
from pytorch_lightning.utilities.rank_zero import rank_zero_info
log = logging.getLogger(__name__)
DATA_URL = "https://storage.googleapis.com/mledu-datasets/cats_and_dogs_filtered.zip"
# --- Finetuning Callback ---
class MilestonesFinetuning(BaseFinetuning):
def __init__(self, milestones: tuple = (5, 10), train_bn: bool = False):
super().__init__()
self.milestones = milestones
self.train_bn = train_bn
def freeze_before_training(self, pl_module: pl.LightningModule):
self.freeze(modules=pl_module.feature_extractor, train_bn=self.train_bn)
def finetune_function(self, pl_module: pl.LightningModule, epoch: int, optimizer: Optimizer, opt_idx: int):
if epoch == self.milestones[0]:
# unfreeze 5 last layers
self.unfreeze_and_add_param_group(
modules=pl_module.feature_extractor[-5:], optimizer=optimizer, train_bn=self.train_bn
)
elif epoch == self.milestones[1]:
# unfreeze remaining layers
self.unfreeze_and_add_param_group(
modules=pl_module.feature_extractor[:-5], optimizer=optimizer, train_bn=self.train_bn
)
class CatDogImageDataModule(LightningDataModule):
def __init__(self, dl_path: Union[str, Path] = "data", num_workers: int = 0, batch_size: int = 8):
"""CatDogImageDataModule.
Args:
dl_path: root directory where to download the data
num_workers: number of CPU workers
batch_size: number of sample in a batch
"""
super().__init__()
self._dl_path = dl_path
self._num_workers = num_workers
self._batch_size = batch_size
def prepare_data(self):
"""Download images and prepare images datasets."""
download_and_extract_archive(url=DATA_URL, download_root=self._dl_path, remove_finished=True)
@property
def data_path(self):
return Path(self._dl_path).joinpath("cats_and_dogs_filtered")
@property
def normalize_transform(self):
return transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
@property
def train_transform(self):
return transforms.Compose(
[
transforms.Resize((224, 224)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
self.normalize_transform,
]
)
@property
def valid_transform(self):
return transforms.Compose([transforms.Resize((224, 224)), transforms.ToTensor(), self.normalize_transform])
def create_dataset(self, root, transform):
return ImageFolder(root=root, transform=transform)
def __dataloader(self, train: bool):
"""Train/validation loaders."""
if train:
dataset = self.create_dataset(self.data_path.joinpath("train"), self.train_transform)
else:
dataset = self.create_dataset(self.data_path.joinpath("validation"), self.valid_transform)
return DataLoader(dataset=dataset, batch_size=self._batch_size, num_workers=self._num_workers, shuffle=train)
def train_dataloader(self):
log.info("Training data loaded.")
return self.__dataloader(train=True)
def val_dataloader(self):
log.info("Validation data loaded.")
return self.__dataloader(train=False)
# --- Pytorch-lightning module ---
class TransferLearningModel(pl.LightningModule):
def __init__(
self,
backbone: str = "resnet50",
train_bn: bool = False,
milestones: tuple = (2, 4),
batch_size: int = 32,
lr: float = 1e-3,
lr_scheduler_gamma: float = 1e-1,
num_workers: int = 6,
**kwargs,
) -> None:
"""TransferLearningModel.
Args:
backbone: Name (as in ``torchvision.models``) of the feature extractor
train_bn: Whether the BatchNorm layers should be trainable
milestones: List of two epochs milestones
lr: Initial learning rate
lr_scheduler_gamma: Factor by which the learning rate is reduced at each milestone
"""
super().__init__()
self.backbone = backbone
self.train_bn = train_bn
self.milestones = milestones
self.batch_size = batch_size
self.lr = lr
self.lr_scheduler_gamma = lr_scheduler_gamma
self.num_workers = num_workers
self.__build_model()
self.train_acc = Accuracy()
self.valid_acc = Accuracy()
self.save_hyperparameters()
def __build_model(self):
"""Define model layers & loss."""
# 1. Load pre-trained network:
model_func = getattr(models, self.backbone)
backbone = model_func(pretrained=True)
_layers = list(backbone.children())[:-1]
self.feature_extractor = nn.Sequential(*_layers)
# 2. Classifier:
_fc_layers = [nn.Linear(2048, 256), nn.ReLU(), nn.Linear(256, 32), nn.Linear(32, 1)]
self.fc = nn.Sequential(*_fc_layers)
# 3. Loss:
self.loss_func = F.binary_cross_entropy_with_logits
def forward(self, x):
"""Forward pass.
Returns logits.
"""
# 1. Feature extraction:
x = self.feature_extractor(x)
x = x.squeeze(-1).squeeze(-1)
# 2. Classifier (returns logits):
x = self.fc(x)
return x
def loss(self, logits, labels):
return self.loss_func(input=logits, target=labels)
def training_step(self, batch, batch_idx):
# 1. Forward pass:
x, y = batch
y_logits = self.forward(x)
y_scores = torch.sigmoid(y_logits)
y_true = y.view((-1, 1)).type_as(x)
# 2. Compute loss
train_loss = self.loss(y_logits, y_true)
# 3. Compute accuracy:
self.log("train_acc", self.train_acc(y_scores, y_true.int()), prog_bar=True)
return train_loss
def validation_step(self, batch, batch_idx):
# 1. Forward pass:
x, y = batch
y_logits = self.forward(x)
y_scores = torch.sigmoid(y_logits)
y_true = y.view((-1, 1)).type_as(x)
# 2. Compute loss
self.log("val_loss", self.loss(y_logits, y_true), prog_bar=True)
# 3. Compute accuracy:
self.log("val_acc", self.valid_acc(y_scores, y_true.int()), prog_bar=True)
def configure_optimizers(self):
parameters = list(self.parameters())
trainable_parameters = list(filter(lambda p: p.requires_grad, parameters))
rank_zero_info(
f"The model will start training with only {len(trainable_parameters)} "
f"trainable parameters out of {len(parameters)}."
)
optimizer = optim.Adam(trainable_parameters, lr=self.lr)
scheduler = MultiStepLR(optimizer, milestones=self.milestones, gamma=self.lr_scheduler_gamma)
return [optimizer], [scheduler]
class MyLightningCLI(LightningCLI):
def add_arguments_to_parser(self, parser):
parser.add_lightning_class_args(MilestonesFinetuning, "finetuning")
parser.link_arguments("data.batch_size", "model.batch_size")
parser.link_arguments("finetuning.milestones", "model.milestones")
parser.link_arguments("finetuning.train_bn", "model.train_bn")
parser.set_defaults(
{
"trainer.max_epochs": 15,
"trainer.enable_model_summary": False,
"trainer.num_sanity_val_steps": 0,
}
)
def cli_main():
MyLightningCLI(TransferLearningModel, CatDogImageDataModule, seed_everything_default=1234)
if __name__ == "__main__":
cli_lightning_logo()
cli_main()