215 lines
6.3 KiB
Python
215 lines
6.3 KiB
Python
import os
|
|
import sys
|
|
|
|
import torch
|
|
import numpy as np
|
|
from test_tube import HyperOptArgumentParser, Experiment, SlurmCluster
|
|
from pytorch_lightning.models.trainer import Trainer
|
|
from pytorch_lightning.utils.arg_parse import add_default_args
|
|
from time import sleep
|
|
|
|
from pytorch_lightning.callbacks.pt_callbacks import EarlyStopping, ModelCheckpoint
|
|
SEED = 2334
|
|
torch.manual_seed(SEED)
|
|
np.random.seed(SEED)
|
|
|
|
# ---------------------
|
|
# DEFINE MODEL HERE
|
|
# ---------------------
|
|
from pytorch_lightning.models.sample_model_template.model_template import ExampleModel1
|
|
# ---------------------
|
|
|
|
AVAILABLE_MODELS = {
|
|
'model_1': ExampleModel1
|
|
}
|
|
|
|
|
|
"""
|
|
Allows training by using command line arguments
|
|
|
|
Run by:
|
|
# TYPE YOUR RUN COMMAND HERE
|
|
"""
|
|
|
|
|
|
def main_local(hparams):
|
|
main(hparams, None, None)
|
|
|
|
|
|
def main(hparams, cluster, results_dict):
|
|
"""
|
|
Main training routine specific for this project
|
|
:param hparams:
|
|
:return:
|
|
"""
|
|
on_gpu = torch.cuda.is_available()
|
|
if hparams.disable_cuda:
|
|
on_gpu = False
|
|
|
|
device = 'cuda' if on_gpu else 'cpu'
|
|
hparams.__setattr__('device', device)
|
|
hparams.__setattr__('on_gpu', on_gpu)
|
|
hparams.__setattr__('nb_gpus', torch.cuda.device_count())
|
|
hparams.__setattr__('inference_mode', hparams.model_load_weights_path is not None)
|
|
|
|
# delay each training start to not overwrite logs
|
|
process_position, current_gpu = TRAINING_MODEL.get_process_position(hparams.gpus)
|
|
sleep(process_position + 1)
|
|
|
|
# init experiment
|
|
exp = Experiment(
|
|
name=hparams.tt_name,
|
|
debug=hparams.debug,
|
|
save_dir=hparams.tt_save_path,
|
|
version=hparams.hpc_exp_number,
|
|
autosave=False,
|
|
description=hparams.tt_description
|
|
)
|
|
|
|
exp.argparse(hparams)
|
|
exp.save()
|
|
|
|
# build model
|
|
print('loading model...')
|
|
model = TRAINING_MODEL(hparams)
|
|
print('model built')
|
|
|
|
# callbacks
|
|
early_stop = EarlyStopping(
|
|
monitor=hparams.early_stop_metric,
|
|
patience=hparams.early_stop_patience,
|
|
verbose=True,
|
|
mode=hparams.early_stop_mode
|
|
)
|
|
|
|
model_save_path = '{}/{}/{}'.format(hparams.model_save_path, exp.name, exp.version)
|
|
checkpoint = ModelCheckpoint(
|
|
filepath=model_save_path,
|
|
save_function=None,
|
|
save_best_only=True,
|
|
verbose=True,
|
|
monitor=hparams.model_save_monitor_value,
|
|
mode=hparams.model_save_monitor_mode
|
|
)
|
|
|
|
# configure trainer
|
|
trainer = Trainer(
|
|
experiment=exp,
|
|
on_gpu=on_gpu,
|
|
cluster=cluster,
|
|
progress_bar=hparams.enable_tqdm,
|
|
overfit_pct=hparams.overfit,
|
|
track_grad_norm=hparams.track_grad_norm,
|
|
fast_dev_run=hparams.fast_dev_run,
|
|
check_val_every_n_epoch=hparams.check_val_every_n_epoch,
|
|
accumulate_grad_batches=hparams.accumulate_grad_batches,
|
|
process_position=process_position,
|
|
current_gpu_name=current_gpu,
|
|
checkpoint_callback=checkpoint,
|
|
early_stop_callback=early_stop,
|
|
enable_early_stop=hparams.enable_early_stop,
|
|
max_nb_epochs=hparams.max_nb_epochs,
|
|
min_nb_epochs=hparams.min_nb_epochs,
|
|
train_percent_check=hparams.train_percent_check,
|
|
val_percent_check=hparams.val_percent_check,
|
|
test_percent_check=hparams.test_percent_check,
|
|
val_check_interval=hparams.val_check_interval,
|
|
log_save_interval=hparams.log_save_interval,
|
|
add_log_row_interval=hparams.add_log_row_interval,
|
|
lr_scheduler_milestones=hparams.lr_scheduler_milestones
|
|
)
|
|
|
|
# train model
|
|
trainer.fit(model)
|
|
|
|
|
|
def get_default_parser(strategy, root_dir):
|
|
|
|
possible_model_names = list(AVAILABLE_MODELS.keys())
|
|
parser = HyperOptArgumentParser(strategy=strategy, add_help=False)
|
|
add_default_args(parser, root_dir, possible_model_names, SEED)
|
|
return parser
|
|
|
|
|
|
def get_model_name(args):
|
|
for i, arg in enumerate(args):
|
|
if 'model_name' in arg:
|
|
return args[i+1]
|
|
|
|
|
|
def optimize_on_cluster(hyperparams):
|
|
# enable cluster training
|
|
cluster = SlurmCluster(
|
|
hyperparam_optimizer=hyperparams,
|
|
log_path=hyperparams.tt_save_path,
|
|
test_tube_exp_name=hyperparams.tt_name
|
|
)
|
|
|
|
# email for cluster coms
|
|
cluster.notify_job_status(email='add_email_here', on_done=True, on_fail=True)
|
|
|
|
# configure cluster
|
|
cluster.per_experiment_nb_gpus = hyperparams.per_experiment_nb_gpus
|
|
cluster.job_time = '48:00:00'
|
|
cluster.gpu_type = '1080ti'
|
|
cluster.memory_mb_per_node = 48000
|
|
|
|
# any modules for code to run in env
|
|
cluster.add_command('source activate pytorch_lightning')
|
|
|
|
# name of exp
|
|
job_display_name = hyperparams.tt_name.split('_')[0]
|
|
job_display_name = job_display_name[0:3]
|
|
|
|
# run hopt
|
|
print('submitting jobs...')
|
|
cluster.optimize_parallel_cluster_gpu(
|
|
main,
|
|
nb_trials=hyperparams.nb_hopt_trials,
|
|
job_name=job_display_name
|
|
)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
model_name = get_model_name(sys.argv)
|
|
|
|
# use default args
|
|
root_dir = os.path.split(os.path.dirname(sys.modules['__main__'].__file__))[0]
|
|
parent_parser = get_default_parser(strategy='random_search', root_dir=root_dir)
|
|
|
|
# allow model to overwrite or extend args
|
|
TRAINING_MODEL = AVAILABLE_MODELS[model_name]
|
|
parser = TRAINING_MODEL.add_model_specific_args(parent_parser)
|
|
parser.json_config('-c', '--config', default=root_dir + '/run_configs/local.json')
|
|
hyperparams = parser.parse_args()
|
|
|
|
# format GPU layout
|
|
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
|
gpu_ids = hyperparams.gpus.split(';')
|
|
|
|
# RUN TRAINING
|
|
if hyperparams.on_cluster:
|
|
print('RUNNING ON SLURM CLUSTER')
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(gpu_ids)
|
|
optimize_on_cluster(hyperparams)
|
|
|
|
elif hyperparams.single_run_gpu:
|
|
print(f'RUNNING 1 TRIAL ON GPU. gpu: {gpu_ids[0]}')
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = gpu_ids[0]
|
|
main(hyperparams, None, None)
|
|
|
|
elif hyperparams.local or hyperparams.single_run:
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
|
|
print('RUNNING LOCALLY')
|
|
main(hyperparams, None, None)
|
|
|
|
else:
|
|
print(f'RUNNING MULTI GPU. GPU ids: {gpu_ids}')
|
|
hyperparams.optimize_parallel_gpu(
|
|
main_local,
|
|
gpu_ids=gpu_ids,
|
|
nb_trials=hyperparams.nb_hopt_trials,
|
|
nb_workers=len(gpu_ids)
|
|
)
|