365 lines
14 KiB
Python
365 lines
14 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import torch
|
|
from pytorch_lightning.trainer.supporters import PredictionCollection
|
|
from pytorch_lightning.core.step_result import Result, EvalResult
|
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
|
from pytorch_lightning.utilities.model_utils import is_overridden
|
|
from pytorch_lightning.utilities.distributed import rank_zero_warn
|
|
from pytorch_lightning.utilities.warning_utils import WarningCache
|
|
|
|
|
|
class EvaluationLoop(object):
|
|
def __init__(self, trainer):
|
|
self.trainer = trainer
|
|
self.testing = False
|
|
self.outputs = []
|
|
self.step_metrics = []
|
|
self.predictions = None
|
|
self.max_batches = None
|
|
self.warning_cache = WarningCache()
|
|
self.num_dataloaders = None
|
|
|
|
def on_trainer_init(self):
|
|
self.trainer.num_val_batches = []
|
|
self.trainer.num_sanity_val_batches = []
|
|
self.trainer.num_test_batches = []
|
|
self.trainer.test_dataloaders = None
|
|
self.trainer.val_dataloaders = None
|
|
self.trainer.running_sanity_check = False
|
|
self.trainer.testing = False
|
|
|
|
# when .test() is called, it sets this
|
|
self.trainer.tested_ckpt_path = None
|
|
|
|
# when true, prints test results
|
|
self.trainer.verbose_test = True
|
|
|
|
def get_evaluation_dataloaders(self, max_batches):
|
|
# select dataloaders
|
|
model = self.trainer.get_model()
|
|
|
|
# select dataloaders
|
|
if self.testing:
|
|
self.trainer.reset_test_dataloader(model)
|
|
|
|
dataloaders = self.trainer.test_dataloaders
|
|
new_max_batches = self.trainer.num_test_batches
|
|
else:
|
|
# val
|
|
in_sanity_check = self.trainer.running_sanity_check
|
|
should_reload_every_epoch = self.trainer.reload_dataloaders_every_epoch
|
|
if (self.trainer.val_dataloaders is None or should_reload_every_epoch) and not in_sanity_check:
|
|
self.trainer.reset_val_dataloader(model)
|
|
|
|
dataloaders = self.trainer.val_dataloaders
|
|
new_max_batches = self.trainer.num_val_batches
|
|
|
|
if max_batches is None:
|
|
max_batches = new_max_batches
|
|
|
|
return dataloaders, max_batches
|
|
|
|
def should_skip_evaluation(self, dataloaders, max_batches):
|
|
# skip when dataloaders aren't defined
|
|
if dataloaders is None:
|
|
return True
|
|
|
|
# enable disabling validation step with limit_val_batches = 0
|
|
should_skip = sum(max_batches) == 0
|
|
if should_skip:
|
|
return True
|
|
|
|
return False
|
|
|
|
def on_evaluation_start(self, *args, **kwargs):
|
|
if self.testing:
|
|
self.trainer.call_hook('on_test_start', *args, **kwargs)
|
|
else:
|
|
self.trainer.call_hook('on_validation_start', *args, **kwargs)
|
|
|
|
def on_evaluation_model_eval(self, *args, **kwargs):
|
|
model_ref = self.trainer.get_model()
|
|
if self.testing:
|
|
model_ref.on_test_model_eval()
|
|
else:
|
|
model_ref.on_validation_model_eval()
|
|
|
|
def on_evaluation_model_train(self, *args, **kwargs):
|
|
model_ref = self.trainer.get_model()
|
|
if self.testing:
|
|
model_ref.on_test_model_train()
|
|
else:
|
|
model_ref.on_validation_model_train()
|
|
|
|
def on_evaluation_end(self, *args, **kwargs):
|
|
if self.testing:
|
|
self.trainer.call_hook('on_test_end', *args, **kwargs)
|
|
else:
|
|
self.trainer.call_hook('on_validation_end', *args, **kwargs)
|
|
|
|
def reload_evaluation_dataloaders(self):
|
|
model = self.trainer.get_model()
|
|
if self.testing:
|
|
self.trainer.reset_test_dataloader(model)
|
|
else:
|
|
self.trainer.reset_val_dataloader(model)
|
|
|
|
def is_using_eval_results(self):
|
|
outputs = self.outputs
|
|
using_eval_result = len(outputs) > 0 and len(outputs[0]) > 0 and isinstance(outputs[0][0], EvalResult)
|
|
return using_eval_result
|
|
|
|
def setup(self, model, max_batches, dataloaders):
|
|
# copy properties for forward overrides
|
|
self.trainer.model_connector.copy_trainer_model_properties(model)
|
|
|
|
# bookkeeping
|
|
self.outputs = []
|
|
self.predictions = PredictionCollection(self.trainer.global_rank, self.trainer.world_size)
|
|
|
|
# convert max_batches to list
|
|
if isinstance(max_batches, int):
|
|
max_batches = [max_batches] * len(dataloaders)
|
|
|
|
self.max_batches = max_batches
|
|
self.num_dataloaders = self._get_num_dataloaders(dataloaders)
|
|
|
|
def on_evaluation_epoch_start(self, *args, **kwargs):
|
|
if self.testing:
|
|
self.trainer.call_hook('on_test_epoch_start', *args, **kwargs)
|
|
else:
|
|
self.trainer.call_hook('on_validation_epoch_start', *args, **kwargs)
|
|
|
|
def build_args(self, test_mode, batch, batch_idx, dataloader_idx):
|
|
# make dataloader_idx arg in validation_step optional
|
|
args = [batch, batch_idx]
|
|
|
|
multiple_val_loaders = (not test_mode and self._get_num_dataloaders(self.trainer.val_dataloaders) > 1)
|
|
multiple_test_loaders = (test_mode and self._get_num_dataloaders(self.trainer.test_dataloaders) > 1)
|
|
|
|
if multiple_test_loaders or multiple_val_loaders:
|
|
args.append(dataloader_idx)
|
|
|
|
return args
|
|
|
|
def _get_num_dataloaders(self, dataloaders):
|
|
# case where user does:
|
|
# return dl1, dl2
|
|
length = len(dataloaders)
|
|
if len(dataloaders) > 0 and isinstance(dataloaders[0], (list, tuple)):
|
|
length = len(dataloaders[0])
|
|
return length
|
|
|
|
def evaluation_step(self, test_mode, batch, batch_idx, dataloader_idx):
|
|
# configure args
|
|
args = self.build_args(test_mode, batch, batch_idx, dataloader_idx)
|
|
|
|
model_ref = self.trainer.get_model()
|
|
# run actual test step
|
|
if self.testing:
|
|
model_ref._current_fx_name = "test_step"
|
|
output = self.trainer.accelerator_backend.test_step(args)
|
|
else:
|
|
model_ref._current_fx_name = "validation_step"
|
|
output = self.trainer.accelerator_backend.validation_step(args)
|
|
|
|
# capture any logged information
|
|
self.trainer.logger_connector.cache_logged_metrics()
|
|
# track batch size for weighted average
|
|
is_result_obj = isinstance(output, Result)
|
|
if is_result_obj:
|
|
output.track_batch_size(batch)
|
|
|
|
# allow only EvalResult when using structured results (from val_step)
|
|
if is_result_obj and not isinstance(output, EvalResult):
|
|
m = 'only EvalResults or dicts are allowed from validation_step'
|
|
raise MisconfigurationException(m)
|
|
|
|
return output
|
|
|
|
def evaluation_step_end(self, *args, **kwargs):
|
|
if self.testing:
|
|
output = self.trainer.call_hook('test_step_end', *args, **kwargs)
|
|
else:
|
|
output = self.trainer.call_hook('validation_step_end', *args, **kwargs)
|
|
return output
|
|
|
|
def evaluation_epoch_end(self):
|
|
# unset dataloder_idx in model
|
|
self.trainer.logger_connector.evaluation_epoch_end(self.testing)
|
|
|
|
using_eval_result = self.is_using_eval_results()
|
|
|
|
# call the model epoch end
|
|
deprecated_results = self.__run_eval_epoch_end(self.num_dataloaders, using_eval_result)
|
|
|
|
# enable returning anything
|
|
for i, r in enumerate(deprecated_results):
|
|
if not isinstance(r, (dict, Result, torch.Tensor)):
|
|
deprecated_results[i] = []
|
|
|
|
return deprecated_results
|
|
|
|
def log_epoch_metrics_on_evaluation_end(self):
|
|
# get the final loop results
|
|
eval_loop_results = self.trainer.logger_connector.get_evaluate_epoch_results(self.testing)
|
|
return eval_loop_results
|
|
|
|
def __run_eval_epoch_end(self, num_dataloaders, using_eval_result):
|
|
model = self.trainer.get_model()
|
|
|
|
# with a single dataloader don't pass an array
|
|
outputs = self.outputs
|
|
eval_results = outputs
|
|
if num_dataloaders == 1:
|
|
eval_results = outputs[0]
|
|
|
|
user_reduced = False
|
|
|
|
if self.testing:
|
|
if is_overridden('test_epoch_end', model=model):
|
|
if using_eval_result:
|
|
eval_results = self.__gather_epoch_end_eval_results(outputs)
|
|
model._current_fx_name = 'test_epoch_end'
|
|
eval_results = model.test_epoch_end(eval_results)
|
|
user_reduced = True
|
|
|
|
else:
|
|
if is_overridden('validation_epoch_end', model=model):
|
|
if using_eval_result:
|
|
eval_results = self.__gather_epoch_end_eval_results(outputs)
|
|
model._current_fx_name = 'validation_epoch_end'
|
|
eval_results = model.validation_epoch_end(eval_results)
|
|
user_reduced = True
|
|
|
|
# capture logging
|
|
self.trainer.logger_connector.cache_logged_metrics()
|
|
# depre warning
|
|
if eval_results is not None and user_reduced:
|
|
step = 'testing_epoch_end' if self.testing else 'validation_epoch_end'
|
|
self.warning_cache.warn(
|
|
f'The {step} should not return anything as of 9.1.'
|
|
' To log, use self.log(...) or self.write(...) directly in the LightningModule'
|
|
)
|
|
|
|
if using_eval_result and not user_reduced:
|
|
eval_results = self.__auto_reduce_result_objs(outputs)
|
|
|
|
if not isinstance(eval_results, list):
|
|
eval_results = [eval_results]
|
|
|
|
# track depreceated metrics
|
|
self.trainer.logger_connector.track_metrics_deprecated(eval_results, using_eval_result, self.testing)
|
|
|
|
return eval_results
|
|
|
|
def __gather_epoch_end_eval_results(self, outputs):
|
|
eval_results = []
|
|
for epoch_output in outputs:
|
|
result = epoch_output[0].__class__.gather(epoch_output)
|
|
if 'checkpoint_on' in result:
|
|
result.checkpoint_on = result.checkpoint_on.mean()
|
|
if 'early_stop_on' in result:
|
|
result.early_stop_on = result.early_stop_on.mean()
|
|
|
|
eval_results.append(result)
|
|
|
|
# with 1 dataloader don't pass in a list
|
|
if len(eval_results) == 1:
|
|
eval_results = eval_results[0]
|
|
return eval_results
|
|
|
|
def __auto_reduce_result_objs(self, outputs):
|
|
# outputs has a list of results per dataloader
|
|
eval_results = []
|
|
for dl_output in outputs:
|
|
result = dl_output[0]
|
|
result = result.__class__.reduce_on_epoch_end(dl_output)
|
|
if 'checkpoint_on' in result:
|
|
result.checkpoint_on = result.checkpoint_on.mean()
|
|
if 'early_stop_on' in result:
|
|
result.early_stop_on = result.early_stop_on.mean()
|
|
eval_results.append(result)
|
|
|
|
return eval_results
|
|
|
|
def on_evaluation_batch_start(self, batch, batch_idx, dataloader_idx):
|
|
# set dataloader_idx to model and track batch_size
|
|
self.trainer.logger_connector.on_evaluation_batch_start(
|
|
self.testing, batch, dataloader_idx, self.num_dataloaders)
|
|
|
|
if self.testing:
|
|
self.trainer.call_hook('on_test_batch_start', batch, batch_idx, dataloader_idx)
|
|
else:
|
|
self.trainer.call_hook('on_validation_batch_start', batch, batch_idx, dataloader_idx)
|
|
|
|
def on_evaluation_batch_end(self, output, batch, batch_idx, dataloader_idx):
|
|
if self.testing:
|
|
self.trainer.call_hook('on_test_batch_end', output, batch, batch_idx, dataloader_idx)
|
|
else:
|
|
self.trainer.call_hook('on_validation_batch_end', output, batch, batch_idx, dataloader_idx)
|
|
|
|
# store predicitons if do_write_predictions and track eval loss history
|
|
self.store_predictions(output, batch_idx, dataloader_idx)
|
|
|
|
def store_predictions(self, output, batch_idx, dataloader_idx):
|
|
# Add step predictions to prediction collection to write later
|
|
if output is not None:
|
|
do_write_predictions = isinstance(output, Result) and self.testing
|
|
if do_write_predictions:
|
|
self.predictions.add(output.pop('predictions', None))
|
|
|
|
# track debug metrics
|
|
self.trainer.dev_debugger.track_eval_loss_history(self.testing, batch_idx, dataloader_idx, output)
|
|
|
|
def on_evaluation_epoch_end(self, *args, **kwargs):
|
|
# call the callback hook
|
|
if self.testing:
|
|
self.trainer.call_hook('on_test_epoch_end', *args, **kwargs)
|
|
else:
|
|
self.trainer.call_hook('on_validation_epoch_end', *args, **kwargs)
|
|
|
|
def log_evaluation_step_metrics(self, output, batch_idx):
|
|
if self.trainer.running_sanity_check:
|
|
return
|
|
|
|
step_log_metrics = {}
|
|
step_pbar_metrics = {}
|
|
if isinstance(output, EvalResult):
|
|
step_log_metrics = output.get_batch_log_metrics(include_forked_originals=False)
|
|
step_pbar_metrics = output.get_batch_pbar_metrics(include_forked_originals=False)
|
|
|
|
self.__log_result_step_metrics(step_log_metrics, step_pbar_metrics, batch_idx)
|
|
|
|
def __log_result_step_metrics(self, step_log_metrics, step_pbar_metrics, batch_idx):
|
|
cached_batch_log_metrics = \
|
|
self.trainer.logger_connector.cached_results.get_latest_batch_log_metrics()
|
|
cached_batch_pbar_metrics = \
|
|
self.trainer.logger_connector.cached_results.get_latest_batch_pbar_metrics()
|
|
|
|
step_log_metrics.update(cached_batch_log_metrics)
|
|
step_pbar_metrics.update(cached_batch_pbar_metrics)
|
|
|
|
if len(step_log_metrics) > 0:
|
|
# make the metrics appear as a different line in the same graph
|
|
metrics_by_epoch = {}
|
|
for k, v in step_log_metrics.items():
|
|
metrics_by_epoch[f'{k}/epoch_{self.trainer.current_epoch}'] = v
|
|
|
|
self.trainer.logger_connector.log_metrics(metrics_by_epoch, {}, step=batch_idx)
|
|
|
|
if len(step_pbar_metrics) > 0:
|
|
self.trainer.logger_connector.add_progress_bar_metrics(step_pbar_metrics)
|