lightning/pytorch_lightning/profiler/__init__.py

127 lines
4.6 KiB
Python

"""
Profiling your training run can help you understand if there are any bottlenecks in your code.
Built-in checks
---------------
PyTorch Lightning supports profiling standard actions in the training loop out of the box, including:
- on_epoch_start
- on_epoch_end
- on_batch_start
- tbptt_split_batch
- model_forward
- model_backward
- on_after_backward
- optimizer_step
- on_batch_end
- training_step_end
- on_training_end
Enable simple profiling
-----------------------
If you only wish to profile the standard actions, you can set `profiler="simple"`
when constructing your `Trainer` object.
.. code-block:: python
trainer = Trainer(..., profiler="simple")
The profiler's results will be printed at the completion of a training `fit()`.
.. code-block:: python
Profiler Report
Action | Mean duration (s) | Total time (s)
-----------------------------------------------------------------
on_epoch_start | 5.993e-06 | 5.993e-06
get_train_batch | 0.0087412 | 16.398
on_batch_start | 5.0865e-06 | 0.0095372
model_forward | 0.0017818 | 3.3408
model_backward | 0.0018283 | 3.4282
on_after_backward | 4.2862e-06 | 0.0080366
optimizer_step | 0.0011072 | 2.0759
on_batch_end | 4.5202e-06 | 0.0084753
on_epoch_end | 3.919e-06 | 3.919e-06
on_train_end | 5.449e-06 | 5.449e-06
Advanced Profiling
--------------------
If you want more information on the functions called during each event, you can use the `AdvancedProfiler`.
This option uses Python's cProfiler_ to provide a report of time spent on *each* function called within your code.
.. _cProfiler: https://docs.python.org/3/library/profile.html#module-cProfile
.. code-block:: python
trainer = Trainer(..., profiler="advanced")
or
profiler = AdvancedProfiler()
trainer = Trainer(..., profiler=profiler)
The profiler's results will be printed at the completion of a training `fit()`. This profiler
report can be quite long, so you can also specify an `output_filename` to save the report instead
of logging it to the output in your terminal. The output below shows the profiling for the action
`get_train_batch`.
.. code-block:: python
Profiler Report
Profile stats for: get_train_batch
4869394 function calls (4863767 primitive calls) in 18.893 seconds
Ordered by: cumulative time
List reduced from 76 to 10 due to restriction <10>
ncalls tottime percall cumtime percall filename:lineno(function)
3752/1876 0.011 0.000 18.887 0.010 {built-in method builtins.next}
1876 0.008 0.000 18.877 0.010 dataloader.py:344(__next__)
1876 0.074 0.000 18.869 0.010 dataloader.py:383(_next_data)
1875 0.012 0.000 18.721 0.010 fetch.py:42(fetch)
1875 0.084 0.000 18.290 0.010 fetch.py:44(<listcomp>)
60000 1.759 0.000 18.206 0.000 mnist.py:80(__getitem__)
60000 0.267 0.000 13.022 0.000 transforms.py:68(__call__)
60000 0.182 0.000 7.020 0.000 transforms.py:93(__call__)
60000 1.651 0.000 6.839 0.000 functional.py:42(to_tensor)
60000 0.260 0.000 5.734 0.000 transforms.py:167(__call__)
You can also reference this profiler in your LightningModule to profile specific actions of interest.
If you don't want to always have the profiler turned on, you can optionally pass a `PassThroughProfiler`
which will allow you to skip profiling without having to make any code changes. Each profiler has a
method `profile()` which returns a context handler. Simply pass in the name of your action that you want
to track and the profiler will record performance for code executed within this context.
.. code-block:: python
from pytorch_lightning.profiler import Profiler, PassThroughProfiler
class MyModel(LightningModule):
def __init__(self, profiler=None):
self.profiler = profiler or PassThroughProfiler()
def custom_processing_step(self, data):
with profiler.profile('my_custom_action'):
# custom processing step
return data
profiler = Profiler()
model = MyModel(profiler)
trainer = Trainer(profiler=profiler, max_epochs=1)
"""
from pytorch_lightning.profiler.profilers import SimpleProfiler, AdvancedProfiler, PassThroughProfiler, BaseProfiler
__all__ = [
'BaseProfiler',
'SimpleProfiler',
'AdvancedProfiler',
'PassThroughProfiler',
]