58 lines
2.2 KiB
Python
58 lines
2.2 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
"""
|
|
Root module for all distributed operations in Lightning.
|
|
Currently supports training on CPU, GPU (dp, ddp, ddp2, horovod) and TPU.
|
|
|
|
"""
|
|
from pytorch_lightning.overrides.data_parallel import (
|
|
LightningDistributedDataParallel,
|
|
LightningDataParallel,
|
|
)
|
|
|
|
|
|
class ModelConnector:
|
|
def __init__(self, trainer):
|
|
self.trainer = trainer
|
|
|
|
def copy_trainer_model_properties(self, model):
|
|
if isinstance(model, LightningDataParallel):
|
|
ref_model = model.module
|
|
elif isinstance(model, LightningDistributedDataParallel):
|
|
ref_model = model.module
|
|
else:
|
|
ref_model = model
|
|
|
|
for m in [model, ref_model]:
|
|
m.trainer = self.trainer
|
|
m.logger = self.trainer.logger
|
|
m.use_dp = self.trainer.use_dp
|
|
m.use_ddp2 = self.trainer.use_ddp2
|
|
m.use_ddp = self.trainer.use_ddp
|
|
m.use_amp = self.trainer.amp_backend is not None
|
|
m.testing = self.trainer.testing
|
|
m.use_single_gpu = self.trainer.use_single_gpu
|
|
m.use_tpu = self.trainer.use_tpu
|
|
m.tpu_local_core_rank = self.trainer.tpu_local_core_rank
|
|
m.tpu_global_core_rank = self.trainer.tpu_global_core_rank
|
|
m.precision = self.trainer.precision
|
|
m.global_rank = self.trainer.global_rank
|
|
m.local_rank = self.trainer.local_rank
|
|
|
|
def get_model(self):
|
|
is_dp_module = isinstance(self.trainer.model, (LightningDistributedDataParallel, LightningDataParallel))
|
|
model = self.trainer.model.module if is_dp_module else self.trainer.model
|
|
return model
|