136 lines
4.9 KiB
Python
136 lines
4.9 KiB
Python
# Copyright The Lightning AI team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from collections import namedtuple
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
import tests_pytorch.helpers.pipelines as tpipes
|
|
from lightning.pytorch import Trainer
|
|
from lightning.pytorch.accelerators import MPSAccelerator
|
|
from lightning.pytorch.demos.boring_classes import BoringModel
|
|
from tests_pytorch.helpers.runif import RunIf
|
|
|
|
|
|
@RunIf(mps=True)
|
|
def test_get_mps_stats():
|
|
current_device = torch.device("mps")
|
|
device_stats = MPSAccelerator().get_device_stats(current_device)
|
|
fields = ["M1_vm_percent", "M1_percent", "M1_swap_percent"]
|
|
|
|
for f in fields:
|
|
assert any(f in h for h in device_stats.keys())
|
|
|
|
|
|
@RunIf(mps=True)
|
|
def test_mps_availability():
|
|
assert MPSAccelerator.is_available()
|
|
|
|
|
|
@RunIf(mps=True)
|
|
def test_warning_if_mps_not_used():
|
|
with pytest.warns(UserWarning, match="MPS available but not used. Set `accelerator` and `devices`"):
|
|
Trainer()
|
|
|
|
|
|
@RunIf(mps=True)
|
|
@pytest.mark.parametrize("accelerator_value", ["mps", MPSAccelerator()])
|
|
def test_trainer_mps_accelerator(accelerator_value):
|
|
trainer = Trainer(accelerator=accelerator_value)
|
|
assert isinstance(trainer.accelerator, MPSAccelerator)
|
|
assert trainer.num_devices == 1
|
|
|
|
|
|
@RunIf(mps=True)
|
|
@pytest.mark.parametrize("devices", [1, [0], "-1"])
|
|
def test_single_gpu_model(tmpdir, devices):
|
|
"""Make sure single GPU works."""
|
|
trainer_options = dict(
|
|
default_root_dir=tmpdir,
|
|
enable_progress_bar=False,
|
|
max_epochs=1,
|
|
limit_train_batches=0.1,
|
|
limit_val_batches=0.1,
|
|
accelerator="mps",
|
|
devices=devices,
|
|
)
|
|
|
|
model = BoringModel()
|
|
tpipes.run_model_test(trainer_options, model)
|
|
|
|
|
|
@RunIf(mps=True)
|
|
def test_single_gpu_batch_parse():
|
|
trainer = Trainer(accelerator="mps", devices=1)
|
|
|
|
# non-transferrable types
|
|
primitive_objects = [None, {}, [], 1.0, "x", [None, 2], {"x": (1, 2), "y": None}]
|
|
for batch in primitive_objects:
|
|
data = trainer.strategy.batch_to_device(batch, torch.device("mps"))
|
|
assert data == batch
|
|
|
|
# batch is just a tensor
|
|
batch = torch.rand(2, 3)
|
|
batch = trainer.strategy.batch_to_device(batch, torch.device("mps"))
|
|
assert batch.device.index == 0 and batch.type() == "torch.mps.FloatTensor"
|
|
|
|
# tensor list
|
|
batch = [torch.rand(2, 3), torch.rand(2, 3)]
|
|
batch = trainer.strategy.batch_to_device(batch, torch.device("mps"))
|
|
assert batch[0].device.index == 0 and batch[0].type() == "torch.mps.FloatTensor"
|
|
assert batch[1].device.index == 0 and batch[1].type() == "torch.mps.FloatTensor"
|
|
|
|
# tensor list of lists
|
|
batch = [[torch.rand(2, 3), torch.rand(2, 3)]]
|
|
batch = trainer.strategy.batch_to_device(batch, torch.device("mps"))
|
|
assert batch[0][0].device.index == 0 and batch[0][0].type() == "torch.mps.FloatTensor"
|
|
assert batch[0][1].device.index == 0 and batch[0][1].type() == "torch.mps.FloatTensor"
|
|
|
|
# tensor dict
|
|
batch = [{"a": torch.rand(2, 3), "b": torch.rand(2, 3)}]
|
|
batch = trainer.strategy.batch_to_device(batch, torch.device("mps"))
|
|
assert batch[0]["a"].device.index == 0 and batch[0]["a"].type() == "torch.mps.FloatTensor"
|
|
assert batch[0]["b"].device.index == 0 and batch[0]["b"].type() == "torch.mps.FloatTensor"
|
|
|
|
# tuple of tensor list and list of tensor dict
|
|
batch = ([torch.rand(2, 3) for _ in range(2)], [{"a": torch.rand(2, 3), "b": torch.rand(2, 3)} for _ in range(2)])
|
|
batch = trainer.strategy.batch_to_device(batch, torch.device("mps"))
|
|
assert batch[0][0].device.index == 0 and batch[0][0].type() == "torch.mps.FloatTensor"
|
|
|
|
assert batch[1][0]["a"].device.index == 0
|
|
assert batch[1][0]["a"].type() == "torch.mps.FloatTensor"
|
|
|
|
assert batch[1][0]["b"].device.index == 0
|
|
assert batch[1][0]["b"].type() == "torch.mps.FloatTensor"
|
|
|
|
# namedtuple of tensor
|
|
BatchType = namedtuple("BatchType", ["a", "b"])
|
|
batch = [BatchType(a=torch.rand(2, 3), b=torch.rand(2, 3)) for _ in range(2)]
|
|
batch = trainer.strategy.batch_to_device(batch, torch.device("mps"))
|
|
assert batch[0].a.device.index == 0
|
|
assert batch[0].a.type() == "torch.mps.FloatTensor"
|
|
|
|
# non-Tensor that has `.to()` defined
|
|
class CustomBatchType:
|
|
def __init__(self):
|
|
self.a = torch.rand(2, 2)
|
|
|
|
def to(self, *args, **kwargs):
|
|
self.a = self.a.to(*args, **kwargs)
|
|
return self
|
|
|
|
batch = trainer.strategy.batch_to_device(CustomBatchType(), torch.device("mps"))
|
|
assert batch.a.type() == "torch.mps.FloatTensor"
|