lightning/benchmarks/test_basic_parity.py

175 lines
5.8 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import time
import numpy as np
import pytest
import torch
from tqdm import tqdm
from pytorch_lightning import LightningModule, seed_everything, Trainer
from tests.base.models import ParityModuleMNIST, ParityModuleRNN
def assert_parity_relative(pl_values, pt_values, norm_by: float = 1, max_diff: float = 0.1):
# assert speeds
diffs = np.asarray(pl_values) - np.mean(pt_values)
# norm by vanilla time
diffs = diffs / norm_by
# relative to mean reference value
diffs = diffs / np.mean(pt_values)
assert np.mean(diffs) < max_diff, f"Lightning diff {diffs} was worse than vanilla PT (threshold {max_diff})"
def assert_parity_absolute(pl_values, pt_values, norm_by: float = 1, max_diff: float = 0.55):
# assert speeds
diffs = np.asarray(pl_values) - np.mean(pt_values)
# norm by event count
diffs = diffs / norm_by
assert np.mean(diffs) < max_diff, f"Lightning {diffs} was worse than vanilla PT (threshold {max_diff})"
# ParityModuleMNIST runs with num_workers=1
@pytest.mark.parametrize('cls_model,max_diff_speed,max_diff_memory', [
(ParityModuleRNN, 0.05, 0.0),
(ParityModuleMNIST, 0.25, 0.0), # todo: lower this thr
])
@pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine")
def test_pytorch_parity(
tmpdir,
cls_model: LightningModule,
max_diff_speed: float,
max_diff_memory: float,
num_epochs: int = 4,
num_runs: int = 3,
):
"""
Verify that the same pytorch and lightning models achieve the same results
"""
lightning = measure_loops(cls_model, kind="PT Lightning", num_epochs=num_epochs, num_runs=num_runs)
vanilla = measure_loops(cls_model, kind="Vanilla PT", num_epochs=num_epochs, num_runs=num_runs)
# make sure the losses match exactly to 5 decimal places
print(f"Losses are for... \n vanilla: {vanilla['losses']} \n lightning: {lightning['losses']}")
for pl_out, pt_out in zip(lightning['losses'], vanilla['losses']):
np.testing.assert_almost_equal(pl_out, pt_out, 5)
# drop the first run for initialize dataset (download & filter)
assert_parity_absolute(
lightning['durations'][1:], vanilla['durations'][1:], norm_by=num_epochs, max_diff=max_diff_speed
)
assert_parity_relative(lightning['memory'], vanilla['memory'], max_diff=max_diff_memory)
def _hook_memory():
if torch.cuda.is_available():
torch.cuda.synchronize()
used_memory = torch.cuda.max_memory_allocated()
else:
used_memory = np.nan
return used_memory
def measure_loops(cls_model, kind, num_runs=10, num_epochs=10):
"""
Returns an array with the last loss from each epoch for each run
"""
hist_losses = []
hist_durations = []
hist_memory = []
device_type = "cuda" if torch.cuda.is_available() else "cpu"
torch.backends.cudnn.deterministic = True
for i in tqdm(range(num_runs), desc=f'{kind} with {cls_model.__name__}'):
gc.collect()
if device_type == 'cuda':
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_cached()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_accumulated_memory_stats()
torch.cuda.reset_peak_memory_stats()
time.sleep(1)
time_start = time.perf_counter()
_loop = lightning_loop if kind == "PT Lightning" else vanilla_loop
final_loss, used_memory = _loop(cls_model, idx=i, device_type=device_type, num_epochs=num_epochs)
time_end = time.perf_counter()
hist_losses.append(final_loss)
hist_durations.append(time_end - time_start)
hist_memory.append(used_memory)
return {
'losses': hist_losses,
'durations': hist_durations,
'memory': hist_memory,
}
def vanilla_loop(cls_model, idx, device_type: str = 'cuda', num_epochs=10):
device = torch.device(device_type)
# set seed
seed_everything(idx)
# init model parts
model = cls_model()
dl = model.train_dataloader()
optimizer = model.configure_optimizers()
# model to GPU
model = model.to(device)
epoch_losses = []
# as the first run is skipped, no need to run it long
for epoch in range(num_epochs if idx > 0 else 1):
# run through full training set
for j, batch in enumerate(dl):
batch = [x.to(device) for x in batch]
loss_dict = model.training_step(batch, j)
loss = loss_dict['loss']
loss.backward()
optimizer.step()
optimizer.zero_grad()
# track last epoch loss
epoch_losses.append(loss.item())
return epoch_losses[-1], _hook_memory()
def lightning_loop(cls_model, idx, device_type: str = 'cuda', num_epochs=10):
seed_everything(idx)
model = cls_model()
# init model parts
trainer = Trainer(
# as the first run is skipped, no need to run it long
max_epochs=num_epochs if idx > 0 else 1,
progress_bar_refresh_rate=0,
weights_summary=None,
gpus=1 if device_type == 'cuda' else 0,
checkpoint_callback=False,
deterministic=True,
logger=False,
replace_sampler_ddp=False,
)
trainer.fit(model)
return trainer.train_loop.running_loss.last().item(), _hook_memory()