lightning/pytorch_lightning/plugins/precision/precision_plugin.py

158 lines
5.4 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import Any, Callable, Generator, Sequence, Tuple, TYPE_CHECKING, Union
import torch
from pytorch_lightning.plugins.base_plugin import Plugin
from pytorch_lightning.utilities import GradClipAlgorithmType
if TYPE_CHECKING:
from torch.nn import Module
from torch.optim import Optimizer
from pytorch_lightning.core import LightningModule
class PrecisionPlugin(Plugin):
""" Plugin handling the precision-specific parts of the training.
The static classattributes EPSILON and precision must be overwritten in child-classes and their
default values reflect fp32 training.
"""
EPSILON: float = 1e-6
precision: Union[str, int] = 32
def __init__(self) -> None:
super().__init__()
self.clip_grad_funcs = {
GradClipAlgorithmType.VALUE: self.clip_grad_by_value,
GradClipAlgorithmType.NORM: self.clip_grad_by_norm,
}
def master_params(self, optimizer: 'Optimizer') -> Generator[torch.Tensor, None, None]:
"""The master params of the model. Returns the plain model params here.
Maybe different in other precision plugins.
"""
for group in optimizer.param_groups:
for p in group["params"]:
yield p
def connect(
self,
model: 'Module',
optimizers: Sequence['Optimizer'],
lr_schedulers: Sequence[Any],
) -> Tuple['Module', Sequence['Optimizer'], Sequence[Any]]:
"""Connects this plugin to the accelerator and the training process"""
return model, optimizers, lr_schedulers
def backward(
self,
model: 'LightningModule',
closure_loss: torch.Tensor,
optimizer: 'Optimizer',
opt_idx: int,
should_accumulate: bool,
*args: Any,
**kwargs: Any,
) -> torch.Tensor:
"""performs the actual backpropagation
Args:
model: the model to be optimized
closure_loss: the loss value obtained from the closure
optimizer: the optimizer to perform the step lateron
opt_idx: the optimizer's index
should_accumulate: whether to accumulate gradients or not
"""
automatic_optimization = model.automatic_optimization
# do backward pass
if automatic_optimization:
model.backward(closure_loss, optimizer, opt_idx)
else:
closure_loss.backward(*args, **kwargs)
# once backward has been applied, release graph
closure_loss = closure_loss.detach()
return closure_loss
def pre_optimizer_step(
self,
pl_module: 'LightningModule',
optimizer: 'Optimizer',
optimizer_idx: int,
lambda_closure: Callable,
**kwargs: Any,
) -> bool:
"""Hook to do something before each optimizer step."""
return True
def post_optimizer_step(self, optimizer: 'Optimizer', optimizer_idx: int) -> None:
"""Hook to do something after each optimizer step."""
def clip_gradients(
self,
model: 'LightningModule',
optimizer: 'Optimizer',
clip_val: Union[int, float],
gradient_clip_algorithm: GradClipAlgorithmType = GradClipAlgorithmType.NORM,
) -> None:
"""Clips the gradients"""
if clip_val is None:
return
clip_val = float(clip_val)
if clip_val <= 0:
return
clip_grad_func = self.clip_grad_funcs[gradient_clip_algorithm]
clip_grad_func(optimizer, clip_val) # type: ignore
def clip_grad_by_value(self, optimizer: 'Optimizer', clip_val: Union[int, float]) -> None:
"""Clip gradients by value"""
parameters = list(self.master_params(optimizer))
torch.nn.utils.clip_grad_value_(parameters, clip_value=clip_val)
def clip_grad_by_norm(self, optimizer: 'Optimizer', clip_val: Union[int, float], norm_type: float = 2.0) -> None:
"""Clip gradients by norm"""
# TODO: separate TPU case from here
parameters = list(self.master_params(optimizer))
max_norm = clip_val
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
parameters = list(filter(lambda p: p.grad is not None, parameters))
device = parameters[0].device
if norm_type == math.inf:
total_norm = max(p.grad.data.abs().max() for p in parameters)
else:
out = torch.empty(len(parameters), device=device)
for i, p in enumerate(parameters):
torch.norm(p.grad.data.to(device), norm_type, out=out[i])
total_norm = torch.norm(out, norm_type)
eps = self.EPSILON
clip_coef = torch.tensor(max_norm, device=device) / (total_norm + eps)
clip_coef = torch.min(clip_coef, torch.ones_like(clip_coef))
for p in parameters:
p.grad.data.mul_(clip_coef.to(p.grad.data.device))