lightning/pytorch_lightning/utilities/distributed.py

402 lines
14 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import os
from functools import wraps
from platform import python_version
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
from torch.nn.parallel.distributed import DistributedDataParallel
import pytorch_lightning as pl
from pytorch_lightning.utilities.imports import _TORCH_GREATER_EQUAL_1_8, _TORCH_GREATER_EQUAL_1_9, _TPU_AVAILABLE
if _TPU_AVAILABLE:
import torch_xla.core.xla_model as xm
if torch.distributed.is_available():
from torch.distributed import group, ReduceOp
else:
class ReduceOp: # type: ignore # (see https://github.com/python/mypy/issues/1153)
SUM = None
class group: # type: ignore
WORLD = None
log = logging.getLogger(__name__)
def rank_zero_only(fn: Callable) -> Callable:
@wraps(fn)
def wrapped_fn(*args: Any, **kwargs: Any) -> Optional[Any]:
if rank_zero_only.rank == 0:
return fn(*args, **kwargs)
return None
return wrapped_fn
# TODO: this should be part of the cluster environment
def _get_rank() -> int:
rank_keys = ("RANK", "SLURM_PROCID", "LOCAL_RANK")
for key in rank_keys:
rank = os.environ.get(key)
if rank is not None:
return int(rank)
return 0
# add the attribute to the function but don't overwrite in case Trainer has already set it
rank_zero_only.rank = getattr(rank_zero_only, "rank", _get_rank())
def _info(*args: Any, stacklevel: int = 2, **kwargs: Any) -> None:
if python_version() >= "3.8.0":
kwargs["stacklevel"] = stacklevel
log.info(*args, **kwargs)
def _debug(*args: Any, stacklevel: int = 2, **kwargs: Any) -> None:
if python_version() >= "3.8.0":
kwargs["stacklevel"] = stacklevel
log.debug(*args, **kwargs)
@rank_zero_only
def rank_zero_debug(*args: Any, stacklevel: int = 4, **kwargs: Any) -> None:
_debug(*args, stacklevel=stacklevel, **kwargs)
@rank_zero_only
def rank_zero_info(*args: Any, stacklevel: int = 4, **kwargs: Any) -> None:
_info(*args, stacklevel=stacklevel, **kwargs)
def gather_all_tensors(result: torch.Tensor, group: Optional[Any] = None) -> List[torch.Tensor]:
"""Function to gather all tensors from several ddp processes onto a list that is broadcasted to all processes.
Args:
result: the value to sync
group: the process group to gather results from. Defaults to all processes (world)
Return:
gathered_result: list with size equal to the process group where
gathered_result[i] corresponds to result tensor from process i
"""
if group is None:
group = torch.distributed.group.WORLD
# convert tensors to contiguous format
result = result.contiguous()
world_size = torch.distributed.get_world_size(group)
gathered_result = [torch.zeros_like(result) for _ in range(world_size)]
# sync and broadcast all
torch.distributed.barrier(group=group)
torch.distributed.all_gather(gathered_result, result, group)
return gathered_result
def distributed_available() -> bool:
return torch.distributed.is_available() and torch.distributed.is_initialized() or tpu_distributed()
def sync_ddp_if_available(
result: torch.Tensor, group: Optional[Any] = None, reduce_op: Optional[Union[ReduceOp, str]] = None
) -> torch.Tensor:
"""
Function to reduce a tensor across worker processes during distributed training
Args:
result: the value to sync and reduce (typically tensor or number)
group: the process group to gather results from. Defaults to all processes (world)
reduce_op: the reduction operation. Defaults to sum.
Can also be a string of 'avg', 'mean' to calculate the mean during reduction.
Return:
reduced value
"""
if distributed_available():
return sync_ddp(result, group=group, reduce_op=reduce_op)
return result
def sync_ddp(
result: torch.Tensor, group: Optional[Any] = None, reduce_op: Optional[Union[ReduceOp, str]] = None
) -> torch.Tensor:
"""Function to reduce the tensors from several ddp processes to one main process.
Args:
result: the value to sync and reduce (typically tensor or number)
group: the process group to gather results from. Defaults to all processes (world)
reduce_op: the reduction operation. Defaults to sum.
Can also be a string of 'avg', 'mean' to calculate the mean during reduction.
Return:
reduced value
"""
divide_by_world_size = False
if group is None:
group = torch.distributed.group.WORLD
if isinstance(reduce_op, str):
if reduce_op.lower() in ("avg", "mean"):
op = ReduceOp.SUM
divide_by_world_size = True
else:
op = getattr(ReduceOp, reduce_op.upper())
else:
op = reduce_op
# sync all processes before reduction
torch.distributed.barrier(group=group)
torch.distributed.all_reduce(result, op=op, group=group, async_op=False)
if divide_by_world_size:
result = result / torch.distributed.get_world_size(group)
return result
class AllGatherGrad(torch.autograd.Function):
@staticmethod
def forward(
ctx: Any,
tensor: torch.Tensor,
group: Optional["torch.distributed.ProcessGroup"] = group.WORLD,
) -> torch.Tensor:
ctx.group = group
gathered_tensor = [torch.zeros_like(tensor) for _ in range(torch.distributed.get_world_size())]
torch.distributed.all_gather(gathered_tensor, tensor, group=group)
gathered_tensor = torch.stack(gathered_tensor, dim=0)
return gathered_tensor
@staticmethod
def backward(ctx: Any, *grad_output: torch.Tensor) -> Tuple[torch.Tensor, None]:
grad_output = torch.cat(grad_output)
torch.distributed.all_reduce(grad_output, op=torch.distributed.ReduceOp.SUM, async_op=False, group=ctx.group)
return grad_output[torch.distributed.get_rank()], None
def all_gather_ddp_if_available(
tensor: torch.Tensor, group: Optional["torch.distributed.ProcessGroup"] = None, sync_grads: bool = False
) -> torch.Tensor:
"""Function to gather a tensor from several distributed processes.
Args:
tensor: tensor of shape (batch, ...)
group: the process group to gather results from. Defaults to all processes (world)
sync_grads: flag that allows users to synchronize gradients for all_gather op
Return:
A tensor of shape (world_size, batch, ...)
"""
group = group if group is not None else torch.distributed.group.WORLD
if distributed_available():
if sync_grads:
return AllGatherGrad.apply(tensor, group)
with torch.no_grad():
return AllGatherGrad.apply(tensor, group)
return tensor
def register_ddp_comm_hook(
model: DistributedDataParallel,
ddp_comm_state: Optional[object] = None,
ddp_comm_hook: Optional[Callable] = None,
ddp_comm_wrapper: Optional[Callable] = None,
) -> None:
"""Function to register communication hook for DDP model https://pytorch.org/docs/master/ddp_comm_hooks.html.
Args:
model:
DDP model
ddp_comm_state:
state is passed to the hook and can be used to maintain
and update any state information that users would like to
maintain as part of the training process. Examples: error
feedback in gradient compression, peers to communicate with
next in GossipGrad etc.
ddp_comm_hook:
hook(state: object, bucket: dist._GradBucket) -> torch.futures.Future
This callable function is called once the bucket is ready. The
hook can perform whatever processing is needed and return
a Future indicating completion of any async work (ex: allreduce).
If the hook doesn't perform any communication, it can also
just return a completed Future. The Future should hold the
new value of grad bucket's tensors. Once a bucket is ready,
c10d reducer would call this hook and use the tensors returned
by the Future and copy grads to individual parameters.
ddp_comm_wrapper:
communication hook wraper to support a communication hook such
as FP16 compression as wrapper, which could be combined with
ddp_comm_hook
.. warning ::
DDP communication hook needs pytorch version at least 1.8.0
.. warning ::
DDP communication wrapper needs pytorch version at least 1.9.0
Post-localSGD hook needs pytorch version at least 1.9.0
Example:
from torch.distributed.algorithms.ddp_comm_hooks import (
default_hooks as default,
powerSGD_hook as powerSGD,
post_localSGD_hook as post_localSGD,
)
# fp16_compress_hook for compress gradients
register_ddp_comm_hook(
model=ddp_model,
ddp_comm_hook=default.fp16_compress_hook,
)
# powerSGD_hook
register_ddp_comm_hook(
model=ddp_model,
ddp_comm_state=powerSGD.PowerSGDState(
process_group=None,
matrix_approximation_rank=1,
start_powerSGD_iter=5000,
),
ddp_comm_hook=powerSGD.powerSGD_hook,
)
# post_localSGD_hook
subgroup, _ = torch.distributed.new_subgroups()
register_comm_hook(
model=ddp_model,
state=post_localSGD.PostLocalSGDState(
process_group=None,
subgroup=subgroup,
start_localSGD_iter=1_000,
),
ddp_comm_hook=post_localSGD.post_localSGD_hook,
)
# fp16_compress_wrapper combined with other communication hook
register_ddp_comm_hook(
model=ddp_model,
ddp_comm_state=powerSGD.PowerSGDState(
process_group=None,
matrix_approximation_rank=1,
start_powerSGD_iter=5000,
),
ddp_comm_hook=powerSGD.powerSGD_hook,
ddp_comm_wrapper=default.fp16_compress_wrapper,
)
"""
from pytorch_lightning.utilities import rank_zero_warn
if not _TORCH_GREATER_EQUAL_1_8:
rank_zero_warn("Not registering DDP comm hook. To use communication hooks, please use pytorch>=1.8.0.")
return
if ddp_comm_hook is None:
return
# inform mypy that ddp_comm_hook is callable
ddp_comm_hook: Callable = ddp_comm_hook
if ddp_comm_wrapper is not None:
if not _TORCH_GREATER_EQUAL_1_9:
rank_zero_warn("Not applying DDP comm wrapper. To use communication wrapper, please use pytorch>=1.9.0.")
else:
rank_zero_info(
f"DDP comm wrapper is provided, apply {ddp_comm_wrapper.__qualname__}({ddp_comm_hook.__qualname__})."
)
ddp_comm_hook = ddp_comm_wrapper(ddp_comm_hook)
rank_zero_debug(f"Registering DDP comm hook: {ddp_comm_hook.__qualname__}.")
model.register_comm_hook(state=ddp_comm_state, hook=ddp_comm_hook)
def tpu_distributed() -> bool:
return _TPU_AVAILABLE and xm.xrt_world_size() > 1
def init_dist_connection(
cluster_environment: "pl.plugins.environments.ClusterEnvironment",
torch_distributed_backend: str,
global_rank: Optional[int] = None,
world_size: Optional[int] = None,
**kwargs: Any,
) -> None:
"""Utility function to initialize distributed connection by setting env variables and initiliazing the
distributed process group.
Args:
cluster_environment: ``ClusterEnvironment`` instance
torch_distributed_backend: backend to use (includes `nccl` and `gloo`)
global_rank: rank of the current process
world_size: number of processes in the group
kwargs: kwargs for ``init_process_group``
"""
global_rank = global_rank if global_rank is not None else cluster_environment.global_rank()
world_size = world_size if world_size is not None else cluster_environment.world_size()
os.environ["MASTER_ADDR"] = cluster_environment.main_address
os.environ["MASTER_PORT"] = str(cluster_environment.main_port)
if not torch.distributed.is_available():
raise RuntimeError("torch.distributed is not available. Cannot initialize distributed process group")
if not torch.distributed.is_initialized():
log.info(f"initializing distributed: GLOBAL_RANK: {global_rank}, MEMBER: {global_rank + 1}/{world_size}")
torch.distributed.init_process_group(
torch_distributed_backend, rank=global_rank, world_size=world_size, **kwargs
)
# on rank=0 let everyone know training is starting
rank_zero_info(
f"{'-' * 100}\n"
f"distributed_backend={torch_distributed_backend}\n"
f"All distributed processes registered. Starting with {world_size} processes\n"
f"{'-' * 100}\n"
)
def _broadcast_object_list(obj: Any, rank: int) -> Any:
objects = [obj if torch.distributed.get_rank() == rank else None]
torch.distributed.broadcast_object_list(objects, src=rank)
return objects[0]
# TODO: Refactor with the Strategy Collectives once finalized.
def _collect_states_on_rank_zero(state: Dict[str, Any]) -> Dict[int, Any]:
"""This distributed utility collects dictionary state across all processes.
Args:
state: Dictionary containing the state of the current process
device: Current process device.
Returns:
states: On global rank 0, a dictionary where the primary keys are
the process rank and the values their associated states. Otherwise, returns None.
"""
if not distributed_available():
return {0: state}
return {rank: _broadcast_object_list(state, rank) for rank in range(torch.distributed.get_world_size())}