lightning/pytorch_lightning/trainer/connectors/callback_connector.py

98 lines
3.9 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing import Union, Optional
from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping, ProgressBarBase, ProgressBar
from pytorch_lightning.utilities import rank_zero_warn
from pytorch_lightning.utilities.exceptions import MisconfigurationException
class CallbackConnector:
def __init__(self, trainer):
self.trainer = trainer
def on_trainer_init(
self,
callbacks,
checkpoint_callback,
progress_bar_refresh_rate,
process_position,
default_root_dir,
weights_save_path,
resume_from_checkpoint
):
self.trainer.resume_from_checkpoint = resume_from_checkpoint
# init folder paths for checkpoint + weights save callbacks
self.trainer._default_root_dir = default_root_dir or os.getcwd()
self.trainer._weights_save_path = weights_save_path or self.trainer._default_root_dir
# init callbacks
self.trainer.callbacks = callbacks or []
# configure checkpoint callback
# it is important that this is the last callback to run
# pass through the required args to figure out defaults
self.configure_checkpoint_callbacks(checkpoint_callback)
# init progress bar
self.trainer._progress_bar_callback = self.configure_progress_bar(
progress_bar_refresh_rate, process_position
)
def configure_checkpoint_callbacks(self, checkpoint_callback: Union[ModelCheckpoint, bool]):
if isinstance(checkpoint_callback, ModelCheckpoint):
# TODO: deprecated, remove this block in v1.3.0
rank_zero_warn(
"Passing a ModelCheckpoint instance to Trainer(checkpoint_callbacks=...)"
" is deprecated since v1.1 and will no longer be supported in v1.3.",
DeprecationWarning
)
self.trainer.callbacks.append(checkpoint_callback)
if self._trainer_has_checkpoint_callbacks() and checkpoint_callback is False:
raise MisconfigurationException(
"Trainer was configured with checkpoint_callback=False but found ModelCheckpoint"
" in callbacks list."
)
if not self._trainer_has_checkpoint_callbacks() and checkpoint_callback is True:
self.trainer.callbacks.append(ModelCheckpoint(dirpath=None, filename=None))
def configure_progress_bar(self, refresh_rate=1, process_position=0):
progress_bars = [c for c in self.trainer.callbacks if isinstance(c, ProgressBarBase)]
if len(progress_bars) > 1:
raise MisconfigurationException(
'You added multiple progress bar callbacks to the Trainer, but currently only one'
' progress bar is supported.'
)
elif len(progress_bars) == 1:
progress_bar_callback = progress_bars[0]
elif refresh_rate > 0:
progress_bar_callback = ProgressBar(
refresh_rate=refresh_rate,
process_position=process_position,
)
self.trainer.callbacks.append(progress_bar_callback)
else:
progress_bar_callback = None
return progress_bar_callback
def _trainer_has_checkpoint_callbacks(self):
return len(self.trainer.checkpoint_callbacks) > 0