1135 lines
46 KiB
Python
1135 lines
46 KiB
Python
# Copyright The Lightning AI team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License
|
|
import inspect
|
|
import os
|
|
import sys
|
|
from contextlib import nullcontext
|
|
from typing import Any, Dict
|
|
from unittest import mock
|
|
from unittest.mock import Mock
|
|
|
|
import lightning.fabric
|
|
import pytest
|
|
import torch
|
|
import torch.distributed
|
|
from lightning.fabric import Fabric
|
|
from lightning.fabric.accelerators import XLAAccelerator
|
|
from lightning.fabric.accelerators.accelerator import Accelerator
|
|
from lightning.fabric.accelerators.cpu import CPUAccelerator
|
|
from lightning.fabric.accelerators.cuda import CUDAAccelerator
|
|
from lightning.fabric.accelerators.mps import MPSAccelerator
|
|
from lightning.fabric.connector import _Connector
|
|
from lightning.fabric.plugins import (
|
|
BitsandbytesPrecision,
|
|
DeepSpeedPrecision,
|
|
DoublePrecision,
|
|
FSDPPrecision,
|
|
HalfPrecision,
|
|
MixedPrecision,
|
|
Precision,
|
|
XLAPrecision,
|
|
)
|
|
from lightning.fabric.plugins.environments import (
|
|
KubeflowEnvironment,
|
|
LightningEnvironment,
|
|
LSFEnvironment,
|
|
SLURMEnvironment,
|
|
TorchElasticEnvironment,
|
|
XLAEnvironment,
|
|
)
|
|
from lightning.fabric.plugins.io import TorchCheckpointIO
|
|
from lightning.fabric.strategies import (
|
|
DataParallelStrategy,
|
|
DDPStrategy,
|
|
DeepSpeedStrategy,
|
|
FSDPStrategy,
|
|
ModelParallelStrategy,
|
|
SingleDeviceStrategy,
|
|
SingleDeviceXLAStrategy,
|
|
XLAFSDPStrategy,
|
|
XLAStrategy,
|
|
)
|
|
from lightning.fabric.strategies.ddp import _DDP_FORK_ALIASES
|
|
from lightning.fabric.strategies.launchers.subprocess_script import _SubprocessScriptLauncher
|
|
from lightning.fabric.utilities.imports import _IS_WINDOWS
|
|
from lightning_utilities.test.warning import no_warning_call
|
|
|
|
from tests_fabric.conftest import mock_tpu_available
|
|
from tests_fabric.helpers.runif import RunIf
|
|
|
|
|
|
class DeviceMock(Mock):
|
|
def __instancecheck__(self, instance):
|
|
return True
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
("accelerator", "devices"), [("tpu", "auto"), ("tpu", 1), ("tpu", [1]), ("tpu", 8), ("auto", 1), ("auto", 8)]
|
|
)
|
|
@RunIf(min_python="3.9") # mocking issue
|
|
def test_accelerator_choice_tpu(accelerator, devices, tpu_available, monkeypatch):
|
|
monkeypatch.setattr(torch, "device", DeviceMock())
|
|
|
|
connector = _Connector(accelerator=accelerator, devices=devices)
|
|
assert isinstance(connector.accelerator, XLAAccelerator)
|
|
if devices == "auto" or (isinstance(devices, int) and devices > 1):
|
|
assert isinstance(connector.strategy, XLAStrategy)
|
|
assert isinstance(connector.strategy.cluster_environment, XLAEnvironment)
|
|
assert isinstance(connector.cluster_environment, XLAEnvironment)
|
|
else:
|
|
assert isinstance(connector.strategy, SingleDeviceXLAStrategy)
|
|
|
|
|
|
@RunIf(skip_windows=True, standalone=True)
|
|
def test_strategy_choice_ddp_on_cpu():
|
|
"""Test that selecting DDPStrategy on CPU works."""
|
|
_test_strategy_choice_ddp_and_cpu(ddp_strategy_class=DDPStrategy)
|
|
|
|
|
|
def _test_strategy_choice_ddp_and_cpu(ddp_strategy_class):
|
|
connector = _Connector(
|
|
strategy=ddp_strategy_class(),
|
|
accelerator="cpu",
|
|
devices=2,
|
|
)
|
|
assert isinstance(connector.strategy, ddp_strategy_class)
|
|
assert isinstance(connector.accelerator, CPUAccelerator)
|
|
assert connector.strategy.num_processes == 2
|
|
assert connector.strategy.parallel_devices == [torch.device("cpu")] * 2
|
|
|
|
|
|
@mock.patch.dict(
|
|
os.environ,
|
|
{
|
|
"SLURM_NTASKS": "2",
|
|
"SLURM_JOB_NAME": "SOME_NAME",
|
|
"SLURM_NODEID": "0",
|
|
"LOCAL_RANK": "0",
|
|
"SLURM_PROCID": "0",
|
|
"SLURM_LOCALID": "0",
|
|
},
|
|
)
|
|
@mock.patch("lightning.fabric.accelerators.cuda.num_cuda_devices", return_value=0)
|
|
def test_custom_cluster_environment_in_slurm_environment(_):
|
|
"""Test that we choose the custom cluster even when SLURM or TE flags are around."""
|
|
|
|
class CustomCluster(LightningEnvironment):
|
|
@property
|
|
def main_address(self):
|
|
return "asdf"
|
|
|
|
@property
|
|
def creates_processes_externally(self) -> bool:
|
|
return True
|
|
|
|
connector = _Connector(
|
|
plugins=[CustomCluster()],
|
|
accelerator="cpu",
|
|
strategy="ddp",
|
|
devices=2,
|
|
)
|
|
assert isinstance(connector.accelerator, CPUAccelerator)
|
|
assert isinstance(connector.strategy, DDPStrategy)
|
|
assert isinstance(connector.strategy.cluster_environment, CustomCluster)
|
|
# this checks that `strategy._set_world_ranks` was called by the connector
|
|
assert connector.strategy.world_size == 2
|
|
|
|
|
|
@RunIf(mps=False)
|
|
@mock.patch.dict(
|
|
os.environ,
|
|
{
|
|
"SLURM_NTASKS": "2",
|
|
"SLURM_NTASKS_PER_NODE": "1",
|
|
"SLURM_JOB_NAME": "SOME_NAME",
|
|
"SLURM_NODEID": "0",
|
|
"LOCAL_RANK": "0",
|
|
"SLURM_PROCID": "0",
|
|
"SLURM_LOCALID": "0",
|
|
},
|
|
)
|
|
@mock.patch("lightning.fabric.accelerators.cuda.num_cuda_devices", return_value=0)
|
|
def test_custom_accelerator(*_):
|
|
class Accel(Accelerator):
|
|
def setup_device(self, device: torch.device) -> None:
|
|
pass
|
|
|
|
def get_device_stats(self, device: torch.device) -> Dict[str, Any]:
|
|
pass
|
|
|
|
def teardown(self) -> None:
|
|
pass
|
|
|
|
@staticmethod
|
|
def parse_devices(devices):
|
|
return devices
|
|
|
|
@staticmethod
|
|
def get_parallel_devices(devices):
|
|
return [torch.device("cpu")] * devices
|
|
|
|
@staticmethod
|
|
def auto_device_count() -> int:
|
|
return 1
|
|
|
|
@staticmethod
|
|
def is_available() -> bool:
|
|
return True
|
|
|
|
@staticmethod
|
|
def name() -> str:
|
|
return "custom_acc_name"
|
|
|
|
class Prec(Precision):
|
|
pass
|
|
|
|
class Strat(SingleDeviceStrategy):
|
|
pass
|
|
|
|
strategy = Strat(device=torch.device("cpu"), accelerator=Accel(), precision=Prec())
|
|
connector = _Connector(strategy=strategy, devices=2)
|
|
assert isinstance(connector.accelerator, Accel)
|
|
assert isinstance(connector.strategy, Strat)
|
|
assert isinstance(connector.precision, Prec)
|
|
assert connector.strategy is strategy
|
|
|
|
class Strat(DDPStrategy):
|
|
pass
|
|
|
|
strategy = Strat(accelerator=Accel(), precision=Prec())
|
|
connector = _Connector(strategy=strategy, devices=2)
|
|
assert isinstance(connector.accelerator, Accel)
|
|
assert isinstance(connector.strategy, Strat)
|
|
assert isinstance(connector.precision, Prec)
|
|
assert connector.strategy is strategy
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
("env_vars", "expected_environment"),
|
|
[
|
|
(
|
|
{
|
|
"SLURM_NTASKS": "2",
|
|
"SLURM_NTASKS_PER_NODE": "1",
|
|
"SLURM_JOB_NAME": "SOME_NAME",
|
|
"SLURM_NODEID": "0",
|
|
"LOCAL_RANK": "0",
|
|
"SLURM_PROCID": "0",
|
|
"SLURM_LOCALID": "0",
|
|
},
|
|
SLURMEnvironment,
|
|
),
|
|
(
|
|
{
|
|
"LSB_JOBID": "1",
|
|
"LSB_DJOB_RANKFILE": "SOME_RANK_FILE",
|
|
"JSM_NAMESPACE_LOCAL_RANK": "1",
|
|
"JSM_NAMESPACE_SIZE": "20",
|
|
"JSM_NAMESPACE_RANK": "1",
|
|
},
|
|
LSFEnvironment,
|
|
),
|
|
],
|
|
)
|
|
@mock.patch("lightning.fabric.plugins.environments.lsf.LSFEnvironment._read_hosts", return_value=["node0", "node1"])
|
|
@mock.patch("lightning.fabric.plugins.environments.lsf.LSFEnvironment._get_node_rank", return_value=0)
|
|
def test_fallback_from_ddp_spawn_to_ddp_on_cluster(_, __, env_vars, expected_environment):
|
|
with mock.patch.dict(os.environ, env_vars, clear=True):
|
|
connector = _Connector(strategy="ddp_spawn", accelerator="cpu", devices=2)
|
|
assert isinstance(connector.accelerator, CPUAccelerator)
|
|
assert isinstance(connector.strategy, DDPStrategy)
|
|
assert isinstance(connector.strategy.cluster_environment, expected_environment)
|
|
|
|
|
|
@RunIf(mps=False)
|
|
@mock.patch("lightning.fabric.accelerators.cuda.num_cuda_devices", return_value=2)
|
|
def test_interactive_incompatible_backend_error(_, monkeypatch):
|
|
monkeypatch.setattr(lightning.fabric.connector, "_IS_INTERACTIVE", True)
|
|
with pytest.raises(RuntimeError, match=r"strategy='ddp'\)`.*is not compatible"):
|
|
_Connector(strategy="ddp", accelerator="gpu", devices=2)
|
|
|
|
with pytest.raises(RuntimeError, match=r"strategy='ddp_spawn'\)`.*is not compatible"):
|
|
_Connector(strategy="ddp_spawn", accelerator="gpu", devices=2)
|
|
|
|
with pytest.raises(RuntimeError, match=r"strategy='ddp'\)`.*is not compatible"):
|
|
# Edge case: _Connector maps dp to ddp if accelerator != gpu
|
|
_Connector(strategy="dp", accelerator="cpu")
|
|
|
|
|
|
def test_precision_and_precision_plugin_raises():
|
|
with pytest.raises(ValueError, match="both `precision=16-true` and `plugins"):
|
|
_Connector(precision="16-true", plugins=Precision())
|
|
|
|
|
|
@mock.patch("lightning.fabric.accelerators.cuda.num_cuda_devices", return_value=2)
|
|
@mock.patch("lightning.fabric.accelerators.mps.MPSAccelerator.is_available", return_value=False)
|
|
def test_interactive_compatible_dp_strategy_gpu(_, __, monkeypatch):
|
|
monkeypatch.setattr(lightning.fabric.utilities.imports, "_IS_INTERACTIVE", True)
|
|
connector = _Connector(strategy="dp", accelerator="gpu")
|
|
assert connector.strategy.launcher is None
|
|
|
|
|
|
@RunIf(skip_windows=True)
|
|
def test_interactive_compatible_strategy_ddp_fork(monkeypatch):
|
|
monkeypatch.setattr(lightning.fabric.utilities.imports, "_IS_INTERACTIVE", True)
|
|
connector = _Connector(strategy="ddp_fork", accelerator="cpu")
|
|
assert connector.strategy.launcher.is_interactive_compatible
|
|
|
|
|
|
@RunIf(mps=True)
|
|
@pytest.mark.parametrize(
|
|
("strategy", "strategy_class"),
|
|
[
|
|
("ddp", DDPStrategy),
|
|
("dp", DataParallelStrategy),
|
|
pytest.param("deepspeed", DeepSpeedStrategy, marks=RunIf(deepspeed=True)),
|
|
],
|
|
)
|
|
@pytest.mark.parametrize("accelerator", ["mps", "auto", "gpu", MPSAccelerator()])
|
|
def test_invalid_ddp_strategy_with_mps(accelerator, strategy, strategy_class):
|
|
with pytest.raises(ValueError, match="strategies from the DDP family are not supported"):
|
|
_Connector(accelerator=accelerator, strategy=strategy)
|
|
|
|
with pytest.raises(ValueError, match="strategies from the DDP family are not supported"):
|
|
_Connector(accelerator="mps", strategy=strategy_class())
|
|
|
|
|
|
@RunIf(mps=False)
|
|
@pytest.mark.parametrize(
|
|
("strategy", "strategy_class"),
|
|
[
|
|
("ddp", DDPStrategy),
|
|
("ddp_spawn", DDPStrategy),
|
|
pytest.param("deepspeed", DeepSpeedStrategy, marks=RunIf(deepspeed=True)),
|
|
],
|
|
)
|
|
@pytest.mark.parametrize("devices", [1, 2])
|
|
@mock.patch("lightning.fabric.accelerators.cuda.num_cuda_devices", return_value=2)
|
|
def test_strategy_choice_multi_node_gpu(_, strategy, strategy_class, devices):
|
|
connector = _Connector(num_nodes=2, accelerator="gpu", strategy=strategy, devices=devices)
|
|
assert isinstance(connector.strategy, strategy_class)
|
|
|
|
|
|
def test_num_nodes_input_validation():
|
|
with pytest.raises(ValueError, match="`num_nodes` must be a positive integer"):
|
|
_Connector(num_nodes=0)
|
|
with pytest.raises(ValueError, match="`num_nodes` must be a positive integer"):
|
|
_Connector(num_nodes=-1)
|
|
|
|
|
|
@mock.patch("lightning.fabric.accelerators.cuda.num_cuda_devices", return_value=0)
|
|
def test_cuda_accelerator_can_not_run_on_system(_):
|
|
connector = _Connector(accelerator="cpu")
|
|
assert isinstance(connector.accelerator, CPUAccelerator)
|
|
|
|
with pytest.raises(
|
|
RuntimeError,
|
|
match="CUDAAccelerator` can not run on your system since the accelerator is not available.",
|
|
):
|
|
_Connector(accelerator="cuda", devices=1)
|
|
|
|
|
|
@pytest.mark.skipif(XLAAccelerator.is_available(), reason="test requires missing TPU")
|
|
@mock.patch("lightning.fabric.accelerators.xla._XLA_AVAILABLE", True)
|
|
@mock.patch("lightning.fabric.accelerators.xla._using_pjrt", return_value=True)
|
|
def test_tpu_accelerator_can_not_run_on_system(_):
|
|
with pytest.raises(RuntimeError, match="XLAAccelerator` can not run on your system"):
|
|
_Connector(accelerator="tpu", devices=8)
|
|
|
|
|
|
@mock.patch("lightning.fabric.accelerators.cuda.num_cuda_devices", return_value=2)
|
|
@pytest.mark.parametrize("device_count", [["0"], [0, "1"], ["GPU"], [["0", "1"], [0, 1]], [False]])
|
|
def test_accelerator_invalid_type_devices(_, device_count):
|
|
with pytest.raises(TypeError, match=r"must be an int, a string, a sequence of ints, but you"):
|
|
_ = _Connector(accelerator="gpu", devices=device_count)
|
|
|
|
|
|
@RunIf(min_cuda_gpus=1)
|
|
def test_accelerator_gpu():
|
|
connector = _Connector(accelerator="gpu", devices=1)
|
|
assert isinstance(connector.accelerator, CUDAAccelerator)
|
|
|
|
connector = _Connector(accelerator="gpu")
|
|
assert isinstance(connector.accelerator, CUDAAccelerator)
|
|
|
|
connector = _Connector(accelerator="auto", devices=1)
|
|
assert isinstance(connector.accelerator, CUDAAccelerator)
|
|
|
|
|
|
@pytest.mark.parametrize(("devices", "strategy_class"), [(1, SingleDeviceStrategy), (5, DDPStrategy)])
|
|
def test_accelerator_cpu_with_devices(devices, strategy_class):
|
|
connector = _Connector(accelerator="cpu", devices=devices)
|
|
assert connector._parallel_devices == [torch.device("cpu")] * devices
|
|
assert isinstance(connector.strategy, strategy_class)
|
|
assert isinstance(connector.accelerator, CPUAccelerator)
|
|
|
|
|
|
@RunIf(min_cuda_gpus=2)
|
|
@pytest.mark.parametrize(
|
|
("devices", "strategy_class"), [(1, SingleDeviceStrategy), ([1], SingleDeviceStrategy), (2, DDPStrategy)]
|
|
)
|
|
def test_accelerator_gpu_with_devices(devices, strategy_class):
|
|
connector = _Connector(accelerator="gpu", devices=devices)
|
|
assert len(connector._parallel_devices) == len(devices) if isinstance(devices, list) else devices
|
|
assert isinstance(connector.strategy, strategy_class)
|
|
assert isinstance(connector.accelerator, CUDAAccelerator)
|
|
|
|
|
|
@RunIf(min_cuda_gpus=1)
|
|
def test_accelerator_auto_with_devices_gpu():
|
|
connector = _Connector(accelerator="auto", devices=1)
|
|
assert isinstance(connector.accelerator, CUDAAccelerator)
|
|
assert connector._parallel_devices == [torch.device("cuda", 0)]
|
|
|
|
|
|
def test_set_devices_if_none_cpu():
|
|
connector = _Connector(accelerator="cpu", devices=3)
|
|
assert connector._parallel_devices == [torch.device("cpu")] * 3
|
|
|
|
|
|
@RunIf(mps=False)
|
|
def test_unsupported_strategy_types_on_cpu_and_fallback():
|
|
with pytest.warns(UserWarning, match="is not supported on CPUs, hence setting `strategy='ddp"):
|
|
connector = _Connector(accelerator="cpu", strategy="dp", devices=2)
|
|
assert isinstance(connector.strategy, DDPStrategy)
|
|
|
|
|
|
def test_invalid_accelerator_choice():
|
|
with pytest.raises(ValueError, match="You selected an invalid accelerator name: `accelerator='cocofruit'`"):
|
|
_Connector(accelerator="cocofruit")
|
|
|
|
|
|
@pytest.mark.parametrize("invalid_strategy", ["cocofruit", object()])
|
|
def test_invalid_strategy_choice(invalid_strategy):
|
|
with pytest.raises(ValueError, match="You selected an invalid strategy name:"):
|
|
_Connector(strategy=invalid_strategy)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
("strategy", "strategy_class"),
|
|
[
|
|
("ddp_spawn", DDPStrategy),
|
|
("ddp", DDPStrategy),
|
|
],
|
|
)
|
|
def test_strategy_choice_cpu_str(strategy, strategy_class):
|
|
connector = _Connector(strategy=strategy, accelerator="cpu", devices=2)
|
|
assert isinstance(connector.strategy, strategy_class)
|
|
|
|
|
|
@RunIf(min_cuda_gpus=2)
|
|
@pytest.mark.parametrize(
|
|
("strategy", "strategy_class"),
|
|
[
|
|
("ddp_spawn", DDPStrategy),
|
|
("ddp", DDPStrategy),
|
|
("dp", DataParallelStrategy),
|
|
pytest.param("deepspeed", DeepSpeedStrategy, marks=RunIf(deepspeed=True)),
|
|
],
|
|
)
|
|
def test_strategy_choice_gpu_str(strategy, strategy_class):
|
|
connector = _Connector(strategy=strategy, accelerator="gpu", devices=2)
|
|
assert isinstance(connector.strategy, strategy_class)
|
|
|
|
|
|
def test_device_type_when_strategy_instance_cpu_passed():
|
|
connector = _Connector(strategy=DDPStrategy(), accelerator="cpu", devices=2)
|
|
assert isinstance(connector.strategy, DDPStrategy)
|
|
assert isinstance(connector.accelerator, CPUAccelerator)
|
|
|
|
|
|
@RunIf(min_cuda_gpus=2)
|
|
def test_device_type_when_strategy_instance_gpu_passed():
|
|
connector = _Connector(strategy=DDPStrategy(), accelerator="gpu", devices=2)
|
|
assert isinstance(connector.strategy, DDPStrategy)
|
|
assert isinstance(connector.accelerator, CUDAAccelerator)
|
|
|
|
|
|
@pytest.mark.parametrize("precision", [1, 12, "invalid"])
|
|
def test_validate_precision_type(precision):
|
|
with pytest.raises(ValueError, match=f"Precision {repr(precision)} is invalid"):
|
|
_Connector(precision=precision)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
("precision", "expected_precision", "should_warn"),
|
|
[
|
|
(16, "16-mixed", True),
|
|
("16", "16-mixed", True),
|
|
("16-mixed", "16-mixed", False),
|
|
("bf16", "bf16-mixed", True),
|
|
("bf16-mixed", "bf16-mixed", False),
|
|
(32, "32-true", False),
|
|
("32", "32-true", False),
|
|
("32-true", "32-true", False),
|
|
(64, "64-true", False),
|
|
("64", "64-true", False),
|
|
("64-true", "64-true", False),
|
|
],
|
|
)
|
|
# mock cuda as available to not be limited by dtype and accelerator compatibility - this is tested elsewhere
|
|
@mock.patch("lightning.fabric.accelerators.cuda.num_cuda_devices", return_value=1)
|
|
@mock.patch("lightning.fabric.accelerators.mps.MPSAccelerator.is_available", return_value=False)
|
|
def test_precision_conversion(patch1, patch2, precision, expected_precision, should_warn):
|
|
warn_context = pytest.warns if should_warn else no_warning_call
|
|
with warn_context(
|
|
UserWarning,
|
|
match=(
|
|
f"{precision}` is supported for historical reasons but its usage is discouraged. "
|
|
f"Please set your precision to {expected_precision} instead!"
|
|
),
|
|
):
|
|
connector = _Connector(precision=precision, accelerator="cuda")
|
|
assert connector._precision_input == expected_precision
|
|
|
|
|
|
def test_multi_device_default_strategy():
|
|
"""The default strategy when multiple devices are selected is "ddp" with the subprocess launcher."""
|
|
connector = _Connector(strategy="auto", accelerator="cpu", devices=2)
|
|
assert isinstance(connector.accelerator, CPUAccelerator)
|
|
assert isinstance(connector.strategy, DDPStrategy)
|
|
assert connector.strategy._start_method == "popen"
|
|
assert isinstance(connector.strategy.launcher, _SubprocessScriptLauncher)
|
|
|
|
|
|
def test_strategy_choice_ddp_spawn_cpu():
|
|
connector = _Connector(strategy="ddp_spawn", accelerator="cpu", devices=2)
|
|
assert isinstance(connector.accelerator, CPUAccelerator)
|
|
assert isinstance(connector.strategy, DDPStrategy)
|
|
assert isinstance(connector.strategy.cluster_environment, LightningEnvironment)
|
|
assert connector.strategy._start_method == "spawn"
|
|
assert connector.strategy.launcher._start_method == "spawn"
|
|
|
|
|
|
@RunIf(skip_windows=True)
|
|
@mock.patch("lightning.fabric.connector._IS_INTERACTIVE", True)
|
|
def test_strategy_choice_ddp_fork_in_interactive():
|
|
"""Test that when strategy is unspecified, the connector chooses DDP Fork in interactive environments by
|
|
default."""
|
|
connector = _Connector(accelerator="cpu", devices=2)
|
|
assert isinstance(connector.accelerator, CPUAccelerator)
|
|
assert isinstance(connector.strategy, DDPStrategy)
|
|
assert isinstance(connector.strategy.cluster_environment, LightningEnvironment)
|
|
assert connector.strategy._start_method == "fork"
|
|
assert connector.strategy.launcher._start_method == "fork"
|
|
|
|
|
|
@RunIf(skip_windows=True)
|
|
def test_strategy_choice_ddp_fork_cpu():
|
|
connector = _Connector(strategy="ddp_fork", accelerator="cpu", devices=2)
|
|
assert isinstance(connector.accelerator, CPUAccelerator)
|
|
assert isinstance(connector.strategy, DDPStrategy)
|
|
assert isinstance(connector.strategy.cluster_environment, LightningEnvironment)
|
|
assert connector.strategy._start_method == "fork"
|
|
assert connector.strategy.launcher._start_method == "fork"
|
|
|
|
|
|
@mock.patch.dict(os.environ, {"CUDA_VISIBLE_DEVICES": "0,1"})
|
|
@mock.patch("lightning.fabric.accelerators.cuda.num_cuda_devices", return_value=2)
|
|
@mock.patch("lightning.fabric.accelerators.mps.MPSAccelerator.is_available", return_value=False)
|
|
def test_strategy_choice_ddp(*_):
|
|
connector = _Connector(strategy="ddp", accelerator="gpu", devices=1)
|
|
assert isinstance(connector.accelerator, CUDAAccelerator)
|
|
assert isinstance(connector.strategy, DDPStrategy)
|
|
assert isinstance(connector.strategy.cluster_environment, LightningEnvironment)
|
|
|
|
|
|
@mock.patch.dict(os.environ, {"CUDA_VISIBLE_DEVICES": "0,1"})
|
|
@mock.patch("lightning.fabric.accelerators.cuda.num_cuda_devices", return_value=2)
|
|
@mock.patch("lightning.fabric.accelerators.mps.MPSAccelerator.is_available", return_value=False)
|
|
def test_strategy_choice_ddp_spawn(*_):
|
|
connector = _Connector(strategy="ddp_spawn", accelerator="gpu", devices=1)
|
|
assert isinstance(connector.accelerator, CUDAAccelerator)
|
|
assert isinstance(connector.strategy, DDPStrategy)
|
|
assert isinstance(connector.strategy.cluster_environment, LightningEnvironment)
|
|
|
|
|
|
@mock.patch("lightning.fabric.accelerators.cuda.num_cuda_devices", return_value=2)
|
|
@pytest.mark.parametrize(
|
|
("job_name", "expected_env"), [("some_name", SLURMEnvironment), ("bash", LightningEnvironment)]
|
|
)
|
|
@pytest.mark.parametrize("strategy", ["auto", "ddp", DDPStrategy])
|
|
def test_strategy_choice_ddp_slurm(_, strategy, job_name, expected_env):
|
|
if strategy and not isinstance(strategy, str):
|
|
strategy = strategy()
|
|
|
|
with mock.patch.dict(
|
|
os.environ,
|
|
{
|
|
"CUDA_VISIBLE_DEVICES": "0,1",
|
|
"SLURM_NTASKS": "2",
|
|
"SLURM_NTASKS_PER_NODE": "1",
|
|
"SLURM_JOB_NAME": job_name,
|
|
"SLURM_NODEID": "0",
|
|
"SLURM_PROCID": "1",
|
|
"SLURM_LOCALID": "1",
|
|
},
|
|
):
|
|
connector = _Connector(strategy=strategy, accelerator="cuda", devices=2)
|
|
assert isinstance(connector.accelerator, CUDAAccelerator)
|
|
assert isinstance(connector.strategy, DDPStrategy)
|
|
assert isinstance(connector.strategy.cluster_environment, expected_env)
|
|
|
|
|
|
@mock.patch.dict(
|
|
os.environ,
|
|
{
|
|
"CUDA_VISIBLE_DEVICES": "0,1",
|
|
"WORLD_SIZE": "2",
|
|
"LOCAL_WORLD_SIZE": "2",
|
|
"RANK": "1",
|
|
"LOCAL_RANK": "1",
|
|
"GROUP_RANK": "0",
|
|
"TORCHELASTIC_RUN_ID": "1",
|
|
},
|
|
)
|
|
@mock.patch("lightning.fabric.accelerators.cuda.num_cuda_devices", return_value=2)
|
|
@mock.patch("lightning.fabric.accelerators.mps.MPSAccelerator.is_available", return_value=False)
|
|
def test_strategy_choice_ddp_torchelastic(*_):
|
|
connector = _Connector(accelerator="gpu", devices=2)
|
|
assert isinstance(connector.accelerator, CUDAAccelerator)
|
|
assert isinstance(connector.strategy, DDPStrategy)
|
|
assert isinstance(connector.strategy.cluster_environment, TorchElasticEnvironment)
|
|
assert connector.strategy.cluster_environment.local_rank() == 1
|
|
assert connector.strategy.local_rank == 1
|
|
|
|
|
|
@mock.patch.dict(
|
|
os.environ,
|
|
{
|
|
"TORCHELASTIC_RUN_ID": "1",
|
|
"SLURM_NTASKS": "2",
|
|
"WORLD_SIZE": "2",
|
|
"RANK": "1",
|
|
"LOCAL_RANK": "1",
|
|
},
|
|
)
|
|
@mock.patch("lightning.fabric.accelerators.cuda.num_cuda_devices", return_value=2)
|
|
@mock.patch("lightning.fabric.accelerators.mps.MPSAccelerator.is_available", return_value=False)
|
|
def test_torchelastic_priority_over_slurm(*_):
|
|
"""Test that the TorchElastic cluster environment is chosen over SLURM when both are detected."""
|
|
assert TorchElasticEnvironment.detect()
|
|
assert SLURMEnvironment.detect()
|
|
connector = _Connector(strategy="ddp")
|
|
assert isinstance(connector.strategy.cluster_environment, TorchElasticEnvironment)
|
|
|
|
|
|
@mock.patch.dict(
|
|
os.environ,
|
|
{
|
|
"CUDA_VISIBLE_DEVICES": "0",
|
|
"KUBERNETES_PORT": "tcp://127.0.0.1:443",
|
|
"MASTER_ADDR": "1.2.3.4",
|
|
"MASTER_PORT": "500",
|
|
"WORLD_SIZE": "20",
|
|
"RANK": "1",
|
|
},
|
|
)
|
|
@mock.patch("lightning.fabric.accelerators.cuda.num_cuda_devices", return_value=2)
|
|
@mock.patch("lightning.fabric.accelerators.mps.MPSAccelerator.is_available", return_value=False)
|
|
def test_strategy_choice_ddp_kubeflow(*_):
|
|
connector = _Connector(accelerator="gpu", devices=2, plugins=KubeflowEnvironment())
|
|
assert isinstance(connector.accelerator, CUDAAccelerator)
|
|
assert isinstance(connector.strategy, DDPStrategy)
|
|
assert isinstance(connector.strategy.cluster_environment, KubeflowEnvironment)
|
|
assert connector.strategy.cluster_environment.local_rank() == 0
|
|
assert connector.strategy.local_rank == 0
|
|
|
|
|
|
@mock.patch.dict(
|
|
os.environ,
|
|
{
|
|
"KUBERNETES_PORT": "tcp://127.0.0.1:443",
|
|
"MASTER_ADDR": "1.2.3.4",
|
|
"MASTER_PORT": "500",
|
|
"WORLD_SIZE": "20",
|
|
"RANK": "1",
|
|
},
|
|
)
|
|
def test_strategy_choice_ddp_cpu_kubeflow():
|
|
connector = _Connector(accelerator="cpu", devices=2, plugins=KubeflowEnvironment())
|
|
assert isinstance(connector.accelerator, CPUAccelerator)
|
|
assert isinstance(connector.strategy, DDPStrategy)
|
|
assert isinstance(connector.strategy.cluster_environment, KubeflowEnvironment)
|
|
assert connector.strategy.cluster_environment.local_rank() == 0
|
|
assert connector.strategy.local_rank == 0
|
|
|
|
|
|
@mock.patch.dict(
|
|
os.environ,
|
|
{
|
|
"SLURM_NTASKS": "2",
|
|
"SLURM_NTASKS_PER_NODE": "1",
|
|
"SLURM_JOB_NAME": "SOME_NAME",
|
|
"SLURM_NODEID": "0",
|
|
"LOCAL_RANK": "0",
|
|
"SLURM_PROCID": "0",
|
|
"SLURM_LOCALID": "0",
|
|
},
|
|
)
|
|
@pytest.mark.parametrize("strategy", ["auto", "ddp", DDPStrategy()])
|
|
def test_strategy_choice_ddp_cpu_slurm(strategy):
|
|
connector = _Connector(strategy=strategy, accelerator="cpu", devices=2)
|
|
assert isinstance(connector.accelerator, CPUAccelerator)
|
|
assert isinstance(connector.strategy, DDPStrategy)
|
|
assert isinstance(connector.strategy.cluster_environment, SLURMEnvironment)
|
|
assert connector.strategy.local_rank == 0
|
|
|
|
|
|
@mock.patch.dict(os.environ, {}, clear=True)
|
|
@mock.patch("lightning.fabric.accelerators.mps.MPSAccelerator.is_available", return_value=False)
|
|
def test_unsupported_tpu_choice(_, tpu_available):
|
|
# if user didn't set strategy, _Connector will choose the SingleDeviceXLAStrategy or XLAStrategy
|
|
with pytest.raises(ValueError, match="XLAAccelerator` can only be used with a `SingleDeviceXLAStrategy`"):
|
|
_Connector(accelerator="tpu", precision="16-true", strategy="ddp")
|
|
|
|
# wrong precision plugin type
|
|
with pytest.raises(TypeError, match="can only work with the `XLAPrecision` plugin"):
|
|
XLAStrategy(accelerator=XLAAccelerator(), precision=Precision())
|
|
|
|
# wrong strategy type
|
|
strategy = DDPStrategy(accelerator=XLAAccelerator(), precision=XLAPrecision(precision="16-true"))
|
|
with pytest.raises(ValueError, match="XLAAccelerator` can only be used with a `SingleDeviceXLAStrategy`"):
|
|
_Connector(strategy=strategy)
|
|
|
|
|
|
@RunIf(skip_windows=True)
|
|
def test_connector_with_tpu_accelerator_instance(tpu_available, monkeypatch):
|
|
monkeypatch.setattr(torch, "device", DeviceMock())
|
|
|
|
accelerator = XLAAccelerator()
|
|
connector = _Connector(accelerator=accelerator, devices=1)
|
|
assert connector.accelerator is accelerator
|
|
assert isinstance(connector.strategy, SingleDeviceXLAStrategy)
|
|
|
|
connector = _Connector(accelerator=accelerator)
|
|
assert connector.accelerator is accelerator
|
|
assert isinstance(connector.strategy, XLAStrategy)
|
|
|
|
|
|
@RunIf(mps=True)
|
|
def test_devices_auto_choice_mps():
|
|
connector = _Connector(accelerator="auto", devices="auto")
|
|
assert isinstance(connector.accelerator, MPSAccelerator)
|
|
assert isinstance(connector.strategy, SingleDeviceStrategy)
|
|
assert connector.strategy.root_device == torch.device("mps", 0)
|
|
assert connector._parallel_devices == [torch.device("mps", 0)]
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
("parallel_devices", "accelerator"),
|
|
[([torch.device("cpu")], "cuda"), ([torch.device("cuda", i) for i in range(8)], "tpu")],
|
|
)
|
|
def test_parallel_devices_in_strategy_conflict_with_accelerator(parallel_devices, accelerator):
|
|
with pytest.raises(ValueError, match=r"parallel_devices set through"):
|
|
_Connector(strategy=DDPStrategy(parallel_devices=parallel_devices), accelerator=accelerator)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
("plugins", "expected"),
|
|
[
|
|
([LightningEnvironment(), SLURMEnvironment()], "ClusterEnvironment"),
|
|
([TorchCheckpointIO(), TorchCheckpointIO()], "CheckpointIO"),
|
|
(
|
|
[Precision(), DoublePrecision(), LightningEnvironment(), SLURMEnvironment()],
|
|
"Precision, ClusterEnvironment",
|
|
),
|
|
],
|
|
)
|
|
def test_plugin_only_one_instance_for_one_type(plugins, expected):
|
|
with pytest.raises(ValueError, match=f"Received multiple values for {expected}"):
|
|
_Connector(plugins=plugins)
|
|
|
|
|
|
@pytest.mark.parametrize("accelerator", ["cpu", "cuda", "mps", "tpu"])
|
|
@pytest.mark.parametrize("devices", ["0", 0, []])
|
|
def test_passing_zero_and_empty_list_to_devices_flag(accelerator, devices):
|
|
with pytest.raises(ValueError, match="value is not a valid input using"):
|
|
_Connector(accelerator=accelerator, devices=devices)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
("expected_accelerator_flag", "expected_accelerator_class"),
|
|
[
|
|
pytest.param("cuda", CUDAAccelerator, marks=RunIf(min_cuda_gpus=1)),
|
|
pytest.param("mps", MPSAccelerator, marks=RunIf(mps=True)),
|
|
],
|
|
)
|
|
def test_gpu_accelerator_backend_choice(expected_accelerator_flag, expected_accelerator_class):
|
|
connector = _Connector(accelerator="gpu")
|
|
assert connector._accelerator_flag == expected_accelerator_flag
|
|
assert isinstance(connector.accelerator, expected_accelerator_class)
|
|
|
|
|
|
@mock.patch("lightning.fabric.accelerators.mps.MPSAccelerator.is_available", return_value=False)
|
|
@mock.patch("lightning.fabric.accelerators.cuda.num_cuda_devices", return_value=1)
|
|
def test_gpu_accelerator_backend_choice_cuda(*_):
|
|
connector = _Connector(accelerator="gpu")
|
|
assert connector._accelerator_flag == "cuda"
|
|
assert isinstance(connector.accelerator, CUDAAccelerator)
|
|
|
|
|
|
@mock.patch("lightning.fabric.accelerators.mps.MPSAccelerator.is_available", return_value=True)
|
|
@mock.patch("lightning.fabric.accelerators.mps._get_all_available_mps_gpus", return_value=[0])
|
|
@mock.patch("torch.device", DeviceMock)
|
|
def test_gpu_accelerator_backend_choice_mps(*_: object) -> object:
|
|
connector = _Connector(accelerator="gpu")
|
|
assert connector._accelerator_flag == "mps"
|
|
assert isinstance(connector.accelerator, MPSAccelerator)
|
|
|
|
|
|
@mock.patch("lightning.fabric.accelerators.mps.MPSAccelerator.is_available", return_value=False)
|
|
@mock.patch("lightning.fabric.accelerators.cuda.CUDAAccelerator.is_available", return_value=False)
|
|
def test_gpu_accelerator_no_gpu_backend_found_error(*_):
|
|
with pytest.raises(RuntimeError, match="No supported gpu backend found!"):
|
|
_Connector(accelerator="gpu")
|
|
|
|
|
|
@pytest.mark.parametrize("strategy", _DDP_FORK_ALIASES)
|
|
@mock.patch(
|
|
"lightning.fabric.connector.torch.multiprocessing.get_all_start_methods",
|
|
return_value=[],
|
|
)
|
|
@mock.patch("lightning.fabric.accelerators.mps.MPSAccelerator.is_available", return_value=False)
|
|
def test_ddp_fork_on_unsupported_platform(_, __, strategy):
|
|
with pytest.raises(ValueError, match="process forking is not supported on this platform"):
|
|
_Connector(strategy=strategy)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
("precision_str", "strategy_str", "expected_precision_cls"),
|
|
[
|
|
("64-true", "auto", DoublePrecision),
|
|
("32-true", "auto", Precision),
|
|
("16-true", "auto", HalfPrecision),
|
|
("bf16-true", "auto", HalfPrecision),
|
|
("16-mixed", "auto", MixedPrecision),
|
|
("bf16-mixed", "auto", MixedPrecision),
|
|
pytest.param("32-true", "fsdp", FSDPPrecision, marks=RunIf(min_cuda_gpus=1)),
|
|
pytest.param("16-true", "fsdp", FSDPPrecision, marks=RunIf(min_cuda_gpus=1)),
|
|
pytest.param("bf16-true", "fsdp", FSDPPrecision, marks=RunIf(min_cuda_gpus=1)),
|
|
pytest.param("16-mixed", "fsdp", FSDPPrecision, marks=RunIf(min_cuda_gpus=1)),
|
|
pytest.param("bf16-mixed", "fsdp", FSDPPrecision, marks=RunIf(min_cuda_gpus=1)),
|
|
pytest.param("32-true", "deepspeed", DeepSpeedPrecision, marks=RunIf(deepspeed=True, mps=False)),
|
|
pytest.param("16-true", "deepspeed", DeepSpeedPrecision, marks=RunIf(deepspeed=True, mps=False)),
|
|
pytest.param("bf16-true", "deepspeed", DeepSpeedPrecision, marks=RunIf(deepspeed=True, mps=False)),
|
|
pytest.param("16-mixed", "deepspeed", DeepSpeedPrecision, marks=RunIf(deepspeed=True, mps=False)),
|
|
pytest.param("bf16-mixed", "deepspeed", DeepSpeedPrecision, marks=RunIf(deepspeed=True, mps=False)),
|
|
],
|
|
)
|
|
def test_precision_selection(precision_str, strategy_str, expected_precision_cls):
|
|
connector = _Connector(precision=precision_str, strategy=strategy_str)
|
|
assert isinstance(connector.precision, expected_precision_cls)
|
|
|
|
|
|
def test_precision_selection_16_on_cpu_warns():
|
|
with pytest.warns(
|
|
UserWarning,
|
|
match=r"precision='16-mixed'\)` but AMP with fp16 is not supported on CPU. Using `precision='bf16-mixed'",
|
|
):
|
|
_Connector(accelerator="cpu", precision="16-mixed")
|
|
|
|
|
|
class MyAMP(MixedPrecision):
|
|
pass
|
|
|
|
|
|
@RunIf(mps=False)
|
|
@pytest.mark.parametrize(("strategy", "devices"), [("ddp", 2), ("ddp_spawn", 2)])
|
|
@pytest.mark.parametrize(
|
|
("is_custom_plugin", "plugin_cls"),
|
|
[(False, MixedPrecision), (True, MyAMP)],
|
|
)
|
|
def test_precision_selection_amp_ddp(strategy, devices, is_custom_plugin, plugin_cls):
|
|
plugin = None
|
|
precision = None
|
|
if is_custom_plugin:
|
|
plugin = plugin_cls("16-mixed", "cpu")
|
|
else:
|
|
precision = "16-mixed"
|
|
connector = _Connector(
|
|
accelerator="cpu",
|
|
precision=precision,
|
|
devices=devices,
|
|
strategy=strategy,
|
|
plugins=plugin,
|
|
)
|
|
assert isinstance(connector.precision, plugin_cls)
|
|
|
|
|
|
@RunIf(min_torch="2.4")
|
|
@pytest.mark.parametrize(
|
|
("precision", "raises"),
|
|
[("32-true", False), ("16-true", False), ("bf16-true", False), ("16-mixed", True), ("bf16-mixed", False)],
|
|
)
|
|
@mock.patch("lightning.fabric.accelerators.mps.MPSAccelerator.is_available", return_value=False)
|
|
def test_precision_selection_model_parallel(_, precision, raises):
|
|
error_context = pytest.raises(ValueError, match=f"does not support .*{precision}") if raises else nullcontext()
|
|
with error_context:
|
|
_Connector(precision=precision, strategy=ModelParallelStrategy(lambda x, _: x))
|
|
|
|
|
|
def test_bitsandbytes_precision_cuda_required(monkeypatch):
|
|
monkeypatch.setattr(lightning.fabric.plugins.precision.bitsandbytes, "_BITSANDBYTES_AVAILABLE", True)
|
|
monkeypatch.setitem(sys.modules, "bitsandbytes", Mock())
|
|
with pytest.raises(RuntimeError, match="Bitsandbytes is only supported on CUDA GPUs"):
|
|
_Connector(accelerator="cpu", plugins=BitsandbytesPrecision(mode="int8"))
|
|
|
|
|
|
@pytest.mark.parametrize(("strategy", "strategy_cls"), [("DDP", DDPStrategy), ("Ddp", DDPStrategy)])
|
|
@mock.patch("lightning.fabric.accelerators.mps.MPSAccelerator.is_available", return_value=False)
|
|
def test_strategy_str_passed_being_case_insensitive(_, strategy, strategy_cls):
|
|
connector = _Connector(strategy=strategy)
|
|
assert isinstance(connector.strategy, strategy_cls)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
("precision", "expected"),
|
|
[
|
|
(None, Precision),
|
|
("64-true", DoublePrecision),
|
|
("32-true", Precision),
|
|
("16-true", HalfPrecision),
|
|
("16-mixed", MixedPrecision),
|
|
],
|
|
)
|
|
@mock.patch("lightning.fabric.accelerators.cuda.num_cuda_devices", return_value=1)
|
|
def test_precision_from_environment(_, precision, expected):
|
|
"""Test that the precision input can be set through the environment variable."""
|
|
env_vars = {"LT_CLI_USED": "1"}
|
|
if precision is not None:
|
|
env_vars["LT_PRECISION"] = precision
|
|
with mock.patch.dict(os.environ, env_vars):
|
|
connector = _Connector(accelerator="cuda") # need to use cuda, because AMP not available on CPU
|
|
assert isinstance(connector.precision, expected)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
("accelerator", "strategy", "expected_accelerator", "expected_strategy"),
|
|
[
|
|
(None, None, CPUAccelerator, SingleDeviceStrategy),
|
|
("cpu", None, CPUAccelerator, SingleDeviceStrategy),
|
|
("cpu", "ddp", CPUAccelerator, DDPStrategy),
|
|
pytest.param("mps", None, MPSAccelerator, SingleDeviceStrategy, marks=RunIf(mps=True)),
|
|
pytest.param("cuda", "dp", CUDAAccelerator, DataParallelStrategy, marks=RunIf(min_cuda_gpus=1)),
|
|
pytest.param(
|
|
"cuda", "deepspeed", CUDAAccelerator, DeepSpeedStrategy, marks=RunIf(min_cuda_gpus=1, deepspeed=True)
|
|
),
|
|
],
|
|
)
|
|
def test_accelerator_strategy_from_environment(accelerator, strategy, expected_accelerator, expected_strategy):
|
|
"""Test that the accelerator and strategy input can be set through the environment variables."""
|
|
env_vars = {"LT_CLI_USED": "1"}
|
|
if accelerator is not None:
|
|
env_vars["LT_ACCELERATOR"] = accelerator
|
|
if strategy is not None:
|
|
env_vars["LT_STRATEGY"] = strategy
|
|
|
|
with mock.patch.dict(os.environ, env_vars):
|
|
connector = _Connector(accelerator="cpu" if accelerator is None else "auto")
|
|
assert isinstance(connector.accelerator, expected_accelerator)
|
|
assert isinstance(connector.strategy, expected_strategy)
|
|
|
|
|
|
@mock.patch("lightning.fabric.accelerators.cuda.num_cuda_devices", return_value=8)
|
|
def test_devices_from_environment(*_):
|
|
"""Test that the devices and number of nodes can be set through the environment variables."""
|
|
with mock.patch.dict(os.environ, {"LT_DEVICES": "2", "LT_NUM_NODES": "3", "LT_CLI_USED": "1"}):
|
|
connector = _Connector(accelerator="cuda")
|
|
assert isinstance(connector.accelerator, CUDAAccelerator)
|
|
assert isinstance(connector.strategy, DDPStrategy)
|
|
assert len(connector._parallel_devices) == 2
|
|
assert connector._num_nodes_flag == 3
|
|
|
|
|
|
def test_arguments_from_environment_collision():
|
|
"""Test that the connector raises an error when the CLI settings conflict with settings in the code."""
|
|
|
|
# Do not raise an error about collisions unless the CLI was used
|
|
with mock.patch.dict(os.environ, {"LT_ACCELERATOR": "cpu"}):
|
|
_Connector(accelerator="cuda")
|
|
|
|
with mock.patch.dict(os.environ, {"LT_ACCELERATOR": "cpu", "LT_CLI_USED": "1"}), pytest.raises(
|
|
ValueError, match="`Fabric\\(accelerator='cuda', ...\\)` but .* `--accelerator=cpu`"
|
|
):
|
|
_Connector(accelerator="cuda")
|
|
|
|
with mock.patch.dict(os.environ, {"LT_STRATEGY": "ddp", "LT_CLI_USED": "1"}), pytest.raises(
|
|
ValueError, match="`Fabric\\(strategy='ddp_spawn', ...\\)` but .* `--strategy=ddp`"
|
|
):
|
|
_Connector(strategy="ddp_spawn")
|
|
|
|
with mock.patch.dict(os.environ, {"LT_DEVICES": "2", "LT_CLI_USED": "1"}), pytest.raises(
|
|
ValueError, match="`Fabric\\(devices=3, ...\\)` but .* `--devices=2`"
|
|
):
|
|
_Connector(devices=3)
|
|
|
|
with mock.patch.dict(os.environ, {"LT_NUM_NODES": "3", "LT_CLI_USED": "1"}), pytest.raises(
|
|
ValueError, match="`Fabric\\(num_nodes=2, ...\\)` but .* `--num_nodes=3`"
|
|
):
|
|
_Connector(num_nodes=2)
|
|
|
|
with mock.patch.dict(os.environ, {"LT_PRECISION": "16-mixed", "LT_CLI_USED": "1"}), pytest.raises(
|
|
ValueError, match="`Fabric\\(precision='64-true', ...\\)` but .* `--precision=16-mixed`"
|
|
):
|
|
_Connector(precision="64-true")
|
|
|
|
|
|
@mock.patch("lightning.fabric.accelerators.mps.MPSAccelerator.is_available", return_value=False)
|
|
def test_fsdp_unsupported_on_cpu(_):
|
|
"""Test that we raise an error if attempting to run FSDP without GPU."""
|
|
with pytest.raises(ValueError, match="You selected the FSDP strategy but FSDP is only available on GPU"):
|
|
_Connector(accelerator="cpu", strategy="fsdp")
|
|
|
|
class FSDPStrategySubclass(FSDPStrategy):
|
|
pass
|
|
|
|
class AcceleratorSubclass(CPUAccelerator):
|
|
pass
|
|
|
|
# we allow subclasses of FSDPStrategy to be used with other accelerators
|
|
_Connector(accelerator="cpu", strategy=FSDPStrategySubclass())
|
|
_Connector(accelerator=AcceleratorSubclass(), strategy=FSDPStrategySubclass())
|
|
|
|
|
|
def test_connector_defaults_match_fabric_defaults():
|
|
"""Test that the default values for the init arguments of Connector match the ones in Fabric."""
|
|
|
|
def get_defaults(cls):
|
|
init_signature = inspect.signature(cls)
|
|
return {k: v.default for k, v in init_signature.parameters.items()}
|
|
|
|
fabric_defaults = get_defaults(Fabric)
|
|
connector_defaults = get_defaults(_Connector)
|
|
|
|
# defaults should match on the intersection of argument names
|
|
for name, connector_default in connector_defaults.items():
|
|
assert connector_default == fabric_defaults[name]
|
|
|
|
|
|
@pytest.mark.parametrize("is_interactive", [False, True])
|
|
@RunIf(min_python="3.9") # mocking issue
|
|
def test_connector_auto_selection(monkeypatch, is_interactive):
|
|
no_cuda = mock.patch("lightning.fabric.accelerators.cuda.num_cuda_devices", return_value=0)
|
|
single_cuda = mock.patch("lightning.fabric.accelerators.cuda.num_cuda_devices", return_value=1)
|
|
multi_cuda = mock.patch("lightning.fabric.accelerators.cuda.num_cuda_devices", return_value=4)
|
|
no_mps = mock.patch("lightning.fabric.accelerators.mps.MPSAccelerator.is_available", return_value=False)
|
|
single_mps = mock.patch("lightning.fabric.accelerators.mps.MPSAccelerator.is_available", return_value=True)
|
|
|
|
def _mock_interactive():
|
|
monkeypatch.setattr(lightning.fabric.utilities.imports, "_IS_INTERACTIVE", is_interactive)
|
|
monkeypatch.setattr(lightning.fabric.connector, "_IS_INTERACTIVE", is_interactive)
|
|
if _IS_WINDOWS:
|
|
# simulate fork support on windows
|
|
monkeypatch.setattr(torch.multiprocessing, "get_all_start_methods", lambda: ["fork", "spawn"])
|
|
|
|
_mock_interactive()
|
|
|
|
# CPU
|
|
with no_cuda, no_mps, monkeypatch.context():
|
|
mock_tpu_available(monkeypatch, False)
|
|
connector = _Connector()
|
|
assert isinstance(connector.accelerator, CPUAccelerator)
|
|
assert isinstance(connector.strategy, SingleDeviceStrategy)
|
|
assert connector._devices_flag == 1
|
|
|
|
# single CUDA
|
|
with single_cuda, no_mps, monkeypatch.context():
|
|
mock_tpu_available(monkeypatch, False)
|
|
connector = _Connector()
|
|
assert isinstance(connector.accelerator, CUDAAccelerator)
|
|
assert isinstance(connector.strategy, SingleDeviceStrategy)
|
|
assert connector._devices_flag == [0]
|
|
|
|
# multi CUDA
|
|
with multi_cuda, no_mps, monkeypatch.context():
|
|
mock_tpu_available(monkeypatch, False)
|
|
connector = _Connector()
|
|
assert isinstance(connector.accelerator, CUDAAccelerator)
|
|
assert isinstance(connector.strategy, (SingleDeviceStrategy if is_interactive else DDPStrategy))
|
|
assert connector._devices_flag == [0] if is_interactive else list(range(4))
|
|
if not is_interactive:
|
|
assert isinstance(connector.strategy.cluster_environment, LightningEnvironment)
|
|
assert connector.strategy._start_method == "fork" if is_interactive else "popen"
|
|
assert connector.strategy.launcher.is_interactive_compatible == is_interactive
|
|
|
|
# MPS (there's no distributed)
|
|
with no_cuda, single_mps, monkeypatch.context():
|
|
mock_tpu_available(monkeypatch, False)
|
|
connector = _Connector()
|
|
assert isinstance(connector.accelerator, MPSAccelerator)
|
|
assert isinstance(connector.strategy, SingleDeviceStrategy)
|
|
assert connector._devices_flag == [0]
|
|
|
|
# single TPU
|
|
with no_cuda, no_mps, monkeypatch.context():
|
|
mock_tpu_available(monkeypatch, True)
|
|
monkeypatch.setattr(lightning.fabric.accelerators.XLAAccelerator, "auto_device_count", lambda *_: 1)
|
|
monkeypatch.setattr(torch, "device", DeviceMock())
|
|
connector = _Connector()
|
|
assert isinstance(connector.accelerator, XLAAccelerator)
|
|
assert isinstance(connector.strategy, SingleDeviceXLAStrategy)
|
|
assert connector._devices_flag == 1
|
|
|
|
monkeypatch.undo() # for some reason `.context()` is not working properly
|
|
_mock_interactive()
|
|
|
|
# Multi TPU
|
|
with no_cuda, no_mps, monkeypatch.context():
|
|
mock_tpu_available(monkeypatch, True)
|
|
connector = _Connector()
|
|
assert isinstance(connector.accelerator, XLAAccelerator)
|
|
assert isinstance(connector.strategy, XLAStrategy)
|
|
assert connector._devices_flag == 8
|
|
assert isinstance(connector.strategy.cluster_environment, XLAEnvironment)
|
|
assert connector.strategy.launcher._start_method == "fork"
|
|
assert connector.strategy.launcher.is_interactive_compatible
|
|
|
|
# TPU and CUDA: prefers TPU
|
|
with multi_cuda, no_mps, monkeypatch.context():
|
|
mock_tpu_available(monkeypatch, True)
|
|
connector = _Connector()
|
|
assert isinstance(connector.accelerator, XLAAccelerator)
|
|
assert isinstance(connector.strategy, XLAStrategy)
|
|
assert connector._devices_flag == 8
|
|
assert isinstance(connector.strategy.cluster_environment, XLAEnvironment)
|
|
assert connector.strategy.launcher._start_method == "fork"
|
|
assert connector.strategy.launcher.is_interactive_compatible
|
|
|
|
|
|
@mock.patch("lightning.fabric.accelerators.mps.MPSAccelerator.is_available", return_value=False)
|
|
def test_xla_fsdp_automatic_strategy_selection(monkeypatch, tpu_available):
|
|
import lightning.fabric.strategies as strategies
|
|
|
|
added_fsdp = False
|
|
# manually register fsdp for when torch.distributed.is_initialized() != True
|
|
if "fsdp" not in strategies.STRATEGY_REGISTRY.available_strategies():
|
|
strategies.STRATEGY_REGISTRY.register("fsdp", FSDPStrategy)
|
|
added_fsdp = True
|
|
|
|
connector = _Connector(accelerator="tpu", strategy="fsdp")
|
|
assert isinstance(connector.strategy, XLAFSDPStrategy)
|
|
|
|
connector = _Connector(accelerator="tpu", strategy="xla_fsdp")
|
|
assert isinstance(connector.strategy, XLAFSDPStrategy)
|
|
|
|
connector = _Connector(accelerator="auto", strategy="fsdp")
|
|
assert isinstance(connector.strategy, XLAFSDPStrategy)
|
|
|
|
connector = _Connector(accelerator="auto", strategy="xla_fsdp")
|
|
assert isinstance(connector.strategy, XLAFSDPStrategy)
|
|
|
|
if added_fsdp:
|
|
strategies.STRATEGY_REGISTRY.pop("fsdp")
|