358 lines
16 KiB
Python
358 lines
16 KiB
Python
# Copyright The Lightning AI team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from datetime import timedelta
|
|
from re import escape
|
|
from unittest import mock
|
|
from unittest.mock import Mock
|
|
|
|
import pytest
|
|
import torch
|
|
import torch.nn as nn
|
|
from lightning.fabric.plugins.environments import LightningEnvironment
|
|
from lightning.fabric.strategies import ModelParallelStrategy
|
|
from lightning.fabric.strategies.fsdp import _is_sharded_checkpoint
|
|
from lightning.fabric.strategies.model_parallel import _ParallelBackwardSyncControl
|
|
from torch.optim import Adam
|
|
|
|
from tests_fabric.helpers.runif import RunIf
|
|
|
|
|
|
@mock.patch("lightning.fabric.strategies.model_parallel._TORCH_GREATER_EQUAL_2_4", False)
|
|
def test_torch_greater_equal_2_4():
|
|
with pytest.raises(ImportError, match="ModelParallelStrategy requires PyTorch 2.4 or higher"):
|
|
ModelParallelStrategy(parallelize_fn=(lambda m, _: m))
|
|
|
|
|
|
@RunIf(min_torch="2.4")
|
|
def test_device_mesh_access():
|
|
strategy = ModelParallelStrategy(parallelize_fn=(lambda m, _: m))
|
|
with pytest.raises(RuntimeError, match="Accessing the device mesh .* not allowed"):
|
|
_ = strategy.device_mesh
|
|
|
|
|
|
@RunIf(min_torch="2.4")
|
|
@pytest.mark.parametrize(
|
|
("num_nodes", "devices", "invalid_dp_size", "invalid_tp_size"),
|
|
[
|
|
(1, 4, 1, 1),
|
|
(1, 4, 2, 3),
|
|
(1, 4, 4, 2),
|
|
(2, 4, 1, 4),
|
|
(2, 4, 2, 1),
|
|
],
|
|
)
|
|
def test_validate_device_mesh_dimensions(num_nodes, devices, invalid_dp_size, invalid_tp_size):
|
|
"""Test passing sizes that don't multiply to the world size raises an error."""
|
|
strategy = ModelParallelStrategy(
|
|
parallelize_fn=(lambda m, _: m),
|
|
data_parallel_size=invalid_dp_size,
|
|
tensor_parallel_size=invalid_tp_size,
|
|
)
|
|
strategy._setup_distributed = Mock()
|
|
strategy._accelerator = Mock()
|
|
strategy.cluster_environment = Mock(
|
|
world_size=Mock(return_value=(num_nodes * devices)), local_rank=Mock(return_value=1)
|
|
)
|
|
strategy.parallel_devices = [torch.device("cpu")] * devices
|
|
strategy.num_nodes = num_nodes
|
|
with pytest.raises(RuntimeError, match="multiplied should equal the world size"):
|
|
strategy.setup_environment()
|
|
|
|
|
|
@RunIf(min_torch="2.4")
|
|
def test_checkpoint_io_unsupported():
|
|
"""Test that the ModelParallel strategy does not support the `CheckpointIO` plugin."""
|
|
strategy = ModelParallelStrategy(parallelize_fn=(lambda m, _: m))
|
|
with pytest.raises(NotImplementedError, match="does not use the `CheckpointIO` plugin"):
|
|
_ = strategy.checkpoint_io
|
|
|
|
with pytest.raises(NotImplementedError, match="does not support setting a `CheckpointIO` plugin"):
|
|
strategy.checkpoint_io = Mock()
|
|
|
|
|
|
@RunIf(min_torch="2.4")
|
|
def test_fsdp_v1_modules_unsupported():
|
|
"""Test that the strategy won't allow setting up a module wrapped with the legacy FSDP API."""
|
|
from torch.distributed.fsdp import FullyShardedDataParallel
|
|
|
|
module = Mock(modules=Mock(return_value=[Mock(spec=FullyShardedDataParallel)]))
|
|
strategy = ModelParallelStrategy(parallelize_fn=(lambda x, _: x))
|
|
with pytest.raises(TypeError, match="only supports the new FSDP2 APIs in PyTorch >= 2.4"):
|
|
strategy.setup_module(module)
|
|
|
|
|
|
@RunIf(min_torch="2.4")
|
|
def test_parallelize_fn_call():
|
|
model = nn.Linear(2, 2)
|
|
optimizer = Adam(model.parameters())
|
|
|
|
parallel_model_mock = Mock(spec=nn.Module, parameters=Mock(return_value=[]), buffers=Mock(return_value=[]))
|
|
parallelize_fn = Mock(return_value=parallel_model_mock)
|
|
strategy = ModelParallelStrategy(parallelize_fn=parallelize_fn)
|
|
strategy._device_mesh = Mock()
|
|
strategy.parallel_devices = [torch.device("cpu")]
|
|
model_setup, [optimizer_setup] = strategy.setup_module_and_optimizers(model, [optimizer])
|
|
assert model_setup is parallel_model_mock
|
|
assert optimizer_setup is optimizer
|
|
parallelize_fn.assert_called_with(model, strategy.device_mesh)
|
|
|
|
# Raises an error if parallelize_fn does not return a module
|
|
parallelize_fn = Mock(return_value=None)
|
|
strategy = ModelParallelStrategy(parallelize_fn=parallelize_fn)
|
|
strategy._device_mesh = Mock()
|
|
strategy.parallel_devices = [torch.device("cpu")]
|
|
with pytest.raises(TypeError, match="The `parallelize_fn` must return a `nn.Module` instance"):
|
|
strategy.setup_module_and_optimizers(model, [optimizer])
|
|
|
|
|
|
@RunIf(min_torch="2.4")
|
|
def test_no_backward_sync():
|
|
"""Test that the backward sync control disables gradient sync on modules that benefit from it."""
|
|
from torch.distributed._composable.fsdp import FSDPModule
|
|
|
|
strategy = ModelParallelStrategy(parallelize_fn=(lambda m, _: m))
|
|
assert isinstance(strategy._backward_sync_control, _ParallelBackwardSyncControl)
|
|
|
|
fsdp_layer = Mock(spec=FSDPModule)
|
|
other_layer = nn.Linear(2, 2)
|
|
module = Mock()
|
|
module.modules = Mock(return_value=[fsdp_layer, other_layer])
|
|
|
|
with strategy._backward_sync_control.no_backward_sync(module, True):
|
|
fsdp_layer.set_requires_gradient_sync.assert_called_with(False, recurse=False)
|
|
fsdp_layer.set_requires_gradient_sync.assert_called_with(True, recurse=False)
|
|
|
|
with strategy._backward_sync_control.no_backward_sync(module, False):
|
|
fsdp_layer.set_requires_gradient_sync.assert_called_with(True, recurse=False)
|
|
fsdp_layer.set_requires_gradient_sync.assert_called_with(False, recurse=False)
|
|
|
|
|
|
@RunIf(min_torch="2.4")
|
|
def test_save_checkpoint_storage_options(tmp_path):
|
|
"""Test that the strategy does not accept storage options for saving checkpoints."""
|
|
strategy = ModelParallelStrategy(parallelize_fn=(lambda m, _: m))
|
|
with pytest.raises(
|
|
TypeError, match=escape("ModelParallelStrategy.save_checkpoint(..., storage_options=...)` is not")
|
|
):
|
|
strategy.save_checkpoint(path=tmp_path, state=Mock(), storage_options=Mock())
|
|
|
|
|
|
@RunIf(min_torch="2.4")
|
|
@mock.patch("lightning.fabric.strategies.model_parallel.ModelParallelStrategy.broadcast", lambda _, x: x)
|
|
@mock.patch("lightning.fabric.strategies.model_parallel._has_dtensor_modules", return_value=True)
|
|
@mock.patch("torch.distributed.checkpoint.state_dict.get_model_state_dict", return_value={})
|
|
@mock.patch("torch.distributed.checkpoint.state_dict.get_optimizer_state_dict", return_value={})
|
|
@mock.patch("lightning.fabric.strategies.model_parallel.torch.save")
|
|
@mock.patch("lightning.fabric.strategies.model_parallel.shutil")
|
|
def test_save_checkpoint_path_exists(shutil_mock, torch_save_mock, _, __, ___, tmp_path):
|
|
strategy = ModelParallelStrategy(parallelize_fn=(lambda m, _: m), save_distributed_checkpoint=False)
|
|
|
|
# save_distributed_checkpoint=False, path exists, path is not a sharded checkpoint: error
|
|
path = tmp_path / "not-empty"
|
|
path.mkdir()
|
|
(path / "file").touch()
|
|
assert not _is_sharded_checkpoint(path)
|
|
with pytest.raises(IsADirectoryError, match="exists and is a directory"):
|
|
strategy.save_checkpoint(path=path, state=Mock())
|
|
|
|
# save_distributed_checkpoint=False, path exists, path is a sharded checkpoint: no error (overwrite)
|
|
path = tmp_path / "sharded-checkpoint"
|
|
path.mkdir()
|
|
(path / "meta.pt").touch()
|
|
assert _is_sharded_checkpoint(path)
|
|
model = Mock()
|
|
model.modules.return_value = [model]
|
|
strategy.save_checkpoint(path=path, state={"model": model})
|
|
shutil_mock.rmtree.assert_called_once_with(path)
|
|
|
|
# save_distributed_checkpoint=False, path exists, path is a file: no error (overwrite)
|
|
path = tmp_path / "file.pt"
|
|
path.touch()
|
|
model = Mock(spec=nn.Module)
|
|
torch_save_mock.reset_mock()
|
|
strategy.save_checkpoint(path=path, state={"model": model})
|
|
torch_save_mock.assert_called_once()
|
|
|
|
strategy = ModelParallelStrategy(parallelize_fn=(lambda m, _: m), save_distributed_checkpoint=True)
|
|
save_mock = mock.patch("torch.distributed.checkpoint.save")
|
|
|
|
# save_distributed_checkpoint=True, path exists, path is a folder: no error (overwrite)
|
|
path = tmp_path / "not-empty-2"
|
|
path.mkdir()
|
|
(path / "file").touch()
|
|
model = Mock(spec=nn.Module)
|
|
with save_mock:
|
|
strategy.save_checkpoint(path=path, state={"model": model})
|
|
assert (path / "file").exists()
|
|
|
|
# save_distributed_checkpoint=True, path exists, path is a file: no error (overwrite)
|
|
path = tmp_path / "file-2.pt"
|
|
path.touch()
|
|
model = Mock(spec=nn.Module)
|
|
with save_mock:
|
|
strategy.save_checkpoint(path=path, state={"model": model})
|
|
assert path.is_dir()
|
|
|
|
|
|
@RunIf(min_torch="2.4")
|
|
def test_save_checkpoint_one_dist_module_required(tmp_path):
|
|
"""Test that the ModelParallelStrategy strategy can only save one distributed model per checkpoint."""
|
|
strategy = ModelParallelStrategy(parallelize_fn=(lambda m, _: m))
|
|
|
|
# missing DTensor model
|
|
with pytest.raises(ValueError, match="Could not find a distributed model in the provided checkpoint state."):
|
|
strategy.save_checkpoint(path=tmp_path, state={})
|
|
with pytest.raises(ValueError, match="Could not find a distributed model in the provided checkpoint state."):
|
|
strategy.save_checkpoint(path=tmp_path, state={"model": torch.nn.Linear(3, 3)})
|
|
|
|
# multiple DTensor models
|
|
with mock.patch("lightning.fabric.strategies.model_parallel._has_dtensor_modules", return_value=True):
|
|
model1 = Mock(spec=nn.Module)
|
|
model1.modules.return_value = [model1]
|
|
model2 = Mock(spec=nn.Module)
|
|
model2.modules.return_value = [model2]
|
|
with pytest.raises(ValueError, match="Found multiple distributed models in the given state."):
|
|
strategy.save_checkpoint(path=tmp_path, state={"model1": model1, "model2": model2})
|
|
|
|
|
|
@RunIf(min_torch="2.4")
|
|
def test_load_checkpoint_no_state(tmp_path):
|
|
"""Test that the ModelParallelStrategy strategy can't load the full state without access to a model instance from
|
|
the user."""
|
|
strategy = ModelParallelStrategy(parallelize_fn=(lambda m, _: m))
|
|
with pytest.raises(ValueError, match=escape("Got ModelParallelStrategy.load_checkpoint(..., state=None")):
|
|
strategy.load_checkpoint(path=tmp_path, state=None)
|
|
with pytest.raises(ValueError, match=escape("Got ModelParallelStrategy.load_checkpoint(..., state={})")):
|
|
strategy.load_checkpoint(path=tmp_path, state={})
|
|
|
|
|
|
@RunIf(min_torch="2.4")
|
|
@mock.patch("lightning.fabric.strategies.model_parallel.ModelParallelStrategy.broadcast", lambda _, x: x)
|
|
@mock.patch("lightning.fabric.strategies.model_parallel.torch.load", Mock())
|
|
def test_load_checkpoint_one_dist_module_required(tmp_path):
|
|
"""Test that the ModelParallelStrategy strategy can only load one distributed model per checkpoint."""
|
|
strategy = ModelParallelStrategy(parallelize_fn=(lambda m, _: m))
|
|
|
|
# missing DTensor model
|
|
with pytest.raises(ValueError, match="Could not find a distributed model in the provided checkpoint state."):
|
|
strategy.load_checkpoint(path=tmp_path, state={"other": "data"})
|
|
with pytest.raises(ValueError, match="Could not find a distributed model in the provided checkpoint state."):
|
|
strategy.load_checkpoint(path=tmp_path, state={"model": torch.nn.Linear(3, 3)})
|
|
|
|
# multiple DTensor models
|
|
with mock.patch("lightning.fabric.strategies.model_parallel._has_dtensor_modules", return_value=True):
|
|
model1 = Mock(spec=nn.Module)
|
|
model1.modules.return_value = [model1]
|
|
model2 = Mock(spec=nn.Module)
|
|
model2.modules.return_value = [model2]
|
|
with pytest.raises(ValueError, match="Found multiple distributed models in the given state."):
|
|
strategy.load_checkpoint(path=tmp_path, state={"model1": model1, "model2": model2})
|
|
|
|
# A raw nn.Module instead of a dictionary is ok
|
|
model = Mock(spec=nn.Module)
|
|
model.parameters.return_value = [torch.zeros(2, 1)]
|
|
path = tmp_path / "full.ckpt"
|
|
path.touch()
|
|
strategy.load_checkpoint(path=path, state=model)
|
|
|
|
|
|
@RunIf(min_torch="2.4")
|
|
@mock.patch("lightning.fabric.strategies.model_parallel._has_dtensor_modules", return_value=True)
|
|
def test_load_unknown_checkpoint_type(_, tmp_path):
|
|
"""Test that the strategy validates the contents at the checkpoint path."""
|
|
strategy = ModelParallelStrategy(parallelize_fn=(lambda m, _: m))
|
|
model = Mock()
|
|
path = tmp_path / "empty_dir" # neither a single file nor a directory with meta file
|
|
path.mkdir()
|
|
with pytest.raises(ValueError, match="does not point to a valid checkpoint"):
|
|
strategy.load_checkpoint(path=path, state={"model": model})
|
|
|
|
|
|
@RunIf(min_torch="2.4")
|
|
def test_load_raw_checkpoint_validate_single_file(tmp_path):
|
|
"""Test that we validate the given checkpoint is a single file when loading a raw PyTorch state-dict checkpoint."""
|
|
strategy = ModelParallelStrategy(parallelize_fn=(lambda m, _: m))
|
|
model = Mock(spec=nn.Module)
|
|
path = tmp_path / "folder"
|
|
path.mkdir()
|
|
with pytest.raises(ValueError, match="The given path must be a single file containing the full state dict"):
|
|
strategy.load_checkpoint(path=path, state=model)
|
|
|
|
|
|
@RunIf(min_torch="2.4")
|
|
def test_load_raw_checkpoint_optimizer_unsupported(tmp_path):
|
|
"""Validate that the ModelParallelStrategy strategy does not yet support loading the raw PyTorch state-dict for an
|
|
optimizer."""
|
|
strategy = ModelParallelStrategy(parallelize_fn=(lambda m, _: m))
|
|
optimizer = Mock(spec=torch.optim.Optimizer)
|
|
with pytest.raises(
|
|
NotImplementedError, match="Loading a single optimizer object from a checkpoint is not supported"
|
|
):
|
|
strategy.load_checkpoint(path=tmp_path, state=optimizer)
|
|
|
|
|
|
@RunIf(min_torch="2.4")
|
|
@mock.patch("lightning.fabric.strategies.model_parallel._setup_device_mesh")
|
|
@mock.patch("torch.distributed.init_process_group")
|
|
def test_set_timeout(init_process_group_mock, _):
|
|
"""Test that the timeout gets passed to the ``torch.distributed.init_process_group`` function."""
|
|
test_timedelta = timedelta(seconds=30)
|
|
strategy = ModelParallelStrategy(parallelize_fn=(lambda m, _: m), timeout=test_timedelta)
|
|
strategy.parallel_devices = [torch.device("cpu")]
|
|
strategy.cluster_environment = LightningEnvironment()
|
|
strategy.accelerator = Mock()
|
|
strategy.setup_environment()
|
|
process_group_backend = strategy._get_process_group_backend()
|
|
global_rank = strategy.cluster_environment.global_rank()
|
|
world_size = strategy.cluster_environment.world_size()
|
|
init_process_group_mock.assert_called_with(
|
|
process_group_backend, rank=global_rank, world_size=world_size, timeout=test_timedelta
|
|
)
|
|
|
|
|
|
@RunIf(min_torch="2.4")
|
|
def test_meta_device_materialization():
|
|
"""Test that the `setup_module()` method materializes meta-device tensors in the module."""
|
|
|
|
class NoResetParameters(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.weight = nn.Parameter(torch.ones(4, 4))
|
|
|
|
class CustomModel(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
# nn.Sequential as a parameterless module
|
|
self.layer1 = nn.Sequential(NoResetParameters(), NoResetParameters())
|
|
self.layer2 = nn.Linear(4, 4)
|
|
self.register_buffer("buffer", torch.rand(2))
|
|
|
|
def reset_parameters(self):
|
|
self.buffer.fill_(1.0)
|
|
|
|
strategy = ModelParallelStrategy(parallelize_fn=(lambda x, _: x))
|
|
strategy._device_mesh = Mock()
|
|
strategy._parallel_devices = [torch.device("cpu")]
|
|
|
|
with torch.device("meta"):
|
|
model = CustomModel()
|
|
assert model.layer1[0].weight.is_meta
|
|
assert model.layer2.weight.is_meta
|
|
assert model.buffer.is_meta
|
|
|
|
with pytest.warns(UserWarning, match=r"`reset_parameters\(\)` method for re-initialization: NoResetParameters"):
|
|
model = strategy.setup_module(model)
|
|
assert all(not p.is_meta for p in model.parameters())
|
|
assert all(not b.is_meta for b in model.buffers())
|