lightning/tests/tests_pytorch/utilities/test_parameter_tying.py

76 lines
2.5 KiB
Python

# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pytest
import torch
from lightning.pytorch.demos.boring_classes import BoringModel
from lightning.pytorch.utilities import find_shared_parameters, set_shared_parameters
from torch import nn
class ParameterSharingModule(BoringModel):
def __init__(self):
super().__init__()
self.layer_1 = nn.Linear(32, 10, bias=False)
self.layer_2 = nn.Linear(10, 32, bias=False)
self.layer_3 = nn.Linear(32, 10, bias=False)
self.layer_3.weight = self.layer_1.weight
def forward(self, x):
x = self.layer_1(x)
x = self.layer_2(x)
x = self.layer_3(x)
return x
@pytest.mark.parametrize(
("model", "expected_shared_params"),
[(BoringModel, []), (ParameterSharingModule, [["layer_1.weight", "layer_3.weight"]])],
)
def test_find_shared_parameters(model, expected_shared_params):
assert expected_shared_params == find_shared_parameters(model())
def test_set_shared_parameters():
model = ParameterSharingModule()
set_shared_parameters(model, [["layer_1.weight", "layer_3.weight"]])
assert torch.all(torch.eq(model.layer_1.weight, model.layer_3.weight))
class SubModule(nn.Module):
def __init__(self, layer):
super().__init__()
self.layer = layer
def forward(self, x):
return self.layer(x)
class NestedModule(BoringModel):
def __init__(self):
super().__init__()
self.layer = nn.Linear(32, 10, bias=False)
self.net_a = SubModule(self.layer)
self.layer_2 = nn.Linear(10, 32, bias=False)
self.net_b = SubModule(self.layer)
def forward(self, x):
x = self.net_a(x)
x = self.layer_2(x)
x = self.net_b(x)
return x
model = NestedModule()
set_shared_parameters(model, [["layer.weight", "net_a.layer.weight", "net_b.layer.weight"]])
assert torch.all(torch.eq(model.net_a.layer.weight, model.net_b.layer.weight))