76 lines
2.5 KiB
Python
76 lines
2.5 KiB
Python
# Copyright The Lightning AI team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import pytest
|
|
import torch
|
|
from lightning.pytorch.demos.boring_classes import BoringModel
|
|
from lightning.pytorch.utilities import find_shared_parameters, set_shared_parameters
|
|
from torch import nn
|
|
|
|
|
|
class ParameterSharingModule(BoringModel):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.layer_1 = nn.Linear(32, 10, bias=False)
|
|
self.layer_2 = nn.Linear(10, 32, bias=False)
|
|
self.layer_3 = nn.Linear(32, 10, bias=False)
|
|
self.layer_3.weight = self.layer_1.weight
|
|
|
|
def forward(self, x):
|
|
x = self.layer_1(x)
|
|
x = self.layer_2(x)
|
|
x = self.layer_3(x)
|
|
return x
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
("model", "expected_shared_params"),
|
|
[(BoringModel, []), (ParameterSharingModule, [["layer_1.weight", "layer_3.weight"]])],
|
|
)
|
|
def test_find_shared_parameters(model, expected_shared_params):
|
|
assert expected_shared_params == find_shared_parameters(model())
|
|
|
|
|
|
def test_set_shared_parameters():
|
|
model = ParameterSharingModule()
|
|
set_shared_parameters(model, [["layer_1.weight", "layer_3.weight"]])
|
|
|
|
assert torch.all(torch.eq(model.layer_1.weight, model.layer_3.weight))
|
|
|
|
class SubModule(nn.Module):
|
|
def __init__(self, layer):
|
|
super().__init__()
|
|
self.layer = layer
|
|
|
|
def forward(self, x):
|
|
return self.layer(x)
|
|
|
|
class NestedModule(BoringModel):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.layer = nn.Linear(32, 10, bias=False)
|
|
self.net_a = SubModule(self.layer)
|
|
self.layer_2 = nn.Linear(10, 32, bias=False)
|
|
self.net_b = SubModule(self.layer)
|
|
|
|
def forward(self, x):
|
|
x = self.net_a(x)
|
|
x = self.layer_2(x)
|
|
x = self.net_b(x)
|
|
return x
|
|
|
|
model = NestedModule()
|
|
set_shared_parameters(model, [["layer.weight", "net_a.layer.weight", "net_b.layer.weight"]])
|
|
|
|
assert torch.all(torch.eq(model.net_a.layer.weight, model.net_b.layer.weight))
|