165 lines
5.5 KiB
Python
165 lines
5.5 KiB
Python
# Copyright The Lightning AI team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import operator
|
|
import os
|
|
from pathlib import Path
|
|
from unittest.mock import patch
|
|
|
|
import numpy as np
|
|
import onnxruntime
|
|
import pytest
|
|
import torch
|
|
from lightning.pytorch import Trainer
|
|
from lightning.pytorch.demos.boring_classes import BoringModel
|
|
from lightning_utilities import compare_version
|
|
|
|
import tests_pytorch.helpers.pipelines as tpipes
|
|
from tests_pytorch.helpers.runif import RunIf
|
|
from tests_pytorch.utilities.test_model_summary import UnorderedModel
|
|
|
|
|
|
@RunIf(onnx=True)
|
|
def test_model_saves_with_input_sample(tmp_path):
|
|
"""Test that ONNX model saves with input sample and size is greater than 3 MB."""
|
|
model = BoringModel()
|
|
input_sample = torch.randn((1, 32))
|
|
|
|
file_path = os.path.join(tmp_path, "os.path.onnx")
|
|
model.to_onnx(file_path, input_sample)
|
|
assert os.path.isfile(file_path)
|
|
assert os.path.getsize(file_path) > 4e2
|
|
|
|
file_path = Path(tmp_path) / "pathlib.onnx"
|
|
model.to_onnx(file_path, input_sample)
|
|
assert os.path.isfile(file_path)
|
|
assert os.path.getsize(file_path) > 4e2
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"accelerator", [pytest.param("mps", marks=RunIf(mps=True)), pytest.param("gpu", marks=RunIf(min_cuda_gpus=True))]
|
|
)
|
|
@RunIf(onnx=True)
|
|
def test_model_saves_on_gpu(tmp_path, accelerator):
|
|
"""Test that model saves on gpu."""
|
|
model = BoringModel()
|
|
trainer = Trainer(accelerator=accelerator, devices=1, fast_dev_run=True)
|
|
trainer.fit(model)
|
|
|
|
file_path = os.path.join(tmp_path, "model.onnx")
|
|
input_sample = torch.randn((1, 32))
|
|
model.to_onnx(file_path, input_sample)
|
|
assert os.path.isfile(file_path)
|
|
assert os.path.getsize(file_path) > 4e2
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
("modelclass", "input_sample"),
|
|
[
|
|
(BoringModel, torch.randn(1, 32)),
|
|
(UnorderedModel, (torch.rand(2, 3), torch.rand(2, 10))),
|
|
],
|
|
)
|
|
@RunIf(onnx=True)
|
|
def test_model_saves_with_example_input_array(tmp_path, modelclass, input_sample):
|
|
"""Test that ONNX model saves with example_input_array and size is greater than 3 MB."""
|
|
model = modelclass()
|
|
model.example_input_array = input_sample
|
|
|
|
file_path = os.path.join(tmp_path, "model.onnx")
|
|
model.to_onnx(file_path)
|
|
assert os.path.exists(file_path) is True
|
|
assert os.path.getsize(file_path) > 4e2
|
|
|
|
|
|
@RunIf(min_cuda_gpus=2, onnx=True)
|
|
def test_model_saves_on_multi_gpu(tmp_path):
|
|
"""Test that ONNX model saves on a distributed backend."""
|
|
trainer_options = {
|
|
"default_root_dir": tmp_path,
|
|
"max_epochs": 1,
|
|
"limit_train_batches": 10,
|
|
"limit_val_batches": 10,
|
|
"accelerator": "gpu",
|
|
"devices": [0, 1],
|
|
"strategy": "ddp_spawn",
|
|
"enable_progress_bar": False,
|
|
}
|
|
|
|
model = BoringModel()
|
|
model.example_input_array = torch.randn(5, 32)
|
|
|
|
tpipes.run_model_test(trainer_options, model, min_acc=0.08)
|
|
|
|
file_path = os.path.join(tmp_path, "model.onnx")
|
|
model.to_onnx(file_path)
|
|
assert os.path.exists(file_path) is True
|
|
|
|
|
|
@RunIf(onnx=True)
|
|
def test_verbose_param(tmp_path, capsys):
|
|
"""Test that output is present when verbose parameter is set."""
|
|
model = BoringModel()
|
|
model.example_input_array = torch.randn(5, 32)
|
|
file_path = os.path.join(tmp_path, "model.onnx")
|
|
|
|
with patch("torch.onnx.log", autospec=True) as test:
|
|
model.to_onnx(file_path, verbose=True)
|
|
args, _ = test.call_args
|
|
prefix, _ = args
|
|
assert prefix == "Exported graph: "
|
|
|
|
|
|
@RunIf(onnx=True)
|
|
def test_error_if_no_input(tmp_path):
|
|
"""Test that an error is thrown when there is no input tensor."""
|
|
model = BoringModel()
|
|
model.example_input_array = None
|
|
file_path = os.path.join(tmp_path, "model.onnx")
|
|
with pytest.raises(
|
|
ValueError,
|
|
match=r"Could not export to ONNX since neither `input_sample` nor"
|
|
r" `model.example_input_array` attribute is set.",
|
|
):
|
|
model.to_onnx(file_path)
|
|
|
|
|
|
@RunIf(onnx=True)
|
|
def test_if_inference_output_is_valid(tmp_path):
|
|
"""Test that the output inferred from ONNX model is same as from PyTorch."""
|
|
model = BoringModel()
|
|
model.example_input_array = torch.randn(5, 32)
|
|
|
|
trainer = Trainer(fast_dev_run=True)
|
|
trainer.fit(model)
|
|
|
|
model.eval()
|
|
with torch.no_grad():
|
|
torch_out = model(model.example_input_array)
|
|
|
|
file_path = os.path.join(tmp_path, "model.onnx")
|
|
model.to_onnx(file_path, model.example_input_array, export_params=True)
|
|
|
|
ort_kwargs = {"providers": "CPUExecutionProvider"} if compare_version("onnxruntime", operator.ge, "1.16.0") else {}
|
|
ort_session = onnxruntime.InferenceSession(file_path, **ort_kwargs)
|
|
|
|
def to_numpy(tensor):
|
|
return tensor.detach().cpu().numpy() if tensor.requires_grad else tensor.cpu().numpy()
|
|
|
|
# compute ONNX Runtime output prediction
|
|
ort_inputs = {ort_session.get_inputs()[0].name: to_numpy(model.example_input_array)}
|
|
ort_outs = ort_session.run(None, ort_inputs)
|
|
|
|
# compare ONNX Runtime and PyTorch results
|
|
assert np.allclose(to_numpy(torch_out), ort_outs[0], rtol=1e-03, atol=1e-05)
|