111 lines
3.6 KiB
Python
111 lines
3.6 KiB
Python
# Copyright The Lightning AI team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Tests the evaluation loop."""
|
|
|
|
import torch
|
|
from lightning.pytorch import Trainer
|
|
from lightning.pytorch.core.module import LightningModule
|
|
from lightning.pytorch.trainer.states import RunningStage
|
|
from torch import Tensor
|
|
|
|
from tests_pytorch.helpers.deterministic_model import DeterministicModel
|
|
|
|
|
|
def test__eval_step__flow(tmp_path):
|
|
"""Tests that only training_step can be used."""
|
|
|
|
class TestModel(DeterministicModel):
|
|
def training_step(self, batch, batch_idx):
|
|
acc = self.step(batch, batch_idx)
|
|
acc = acc + batch_idx
|
|
self.training_step_called = True
|
|
return acc
|
|
|
|
def validation_step(self, batch, batch_idx):
|
|
self.validation_step_called = True
|
|
if batch_idx == 0:
|
|
out = ["1", 2, torch.tensor(2)]
|
|
if batch_idx > 0:
|
|
out = {"something": "random"}
|
|
return out
|
|
|
|
def backward(self, loss):
|
|
return LightningModule.backward(self, loss)
|
|
|
|
model = TestModel()
|
|
trainer = Trainer(
|
|
default_root_dir=tmp_path,
|
|
limit_train_batches=2,
|
|
limit_val_batches=2,
|
|
max_epochs=2,
|
|
log_every_n_steps=1,
|
|
enable_model_summary=False,
|
|
)
|
|
trainer.fit(model)
|
|
|
|
# make sure correct steps were called
|
|
assert model.validation_step_called
|
|
|
|
# simulate training manually
|
|
trainer.state.stage = RunningStage.TRAINING
|
|
kwargs = {"batch": next(iter(model.train_dataloader())), "batch_idx": 0}
|
|
train_step_out = trainer.fit_loop.epoch_loop.automatic_optimization.run(trainer.optimizers[0], 0, kwargs)
|
|
|
|
assert isinstance(train_step_out["loss"], Tensor)
|
|
assert train_step_out["loss"].item() == 171
|
|
|
|
# make sure the optimizer closure returns the correct things
|
|
opt_closure = trainer.fit_loop.epoch_loop.automatic_optimization._make_closure(kwargs, trainer.optimizers[0], 0)
|
|
opt_closure_result = opt_closure()
|
|
assert opt_closure_result.item() == 171
|
|
|
|
|
|
def test__eval_step__epoch_end__flow(tmp_path):
|
|
"""Tests that only training_step can be used."""
|
|
|
|
class TestModel(DeterministicModel):
|
|
def training_step(self, batch, batch_idx):
|
|
acc = self.step(batch, batch_idx)
|
|
acc = acc + batch_idx
|
|
self.training_step_called = True
|
|
return acc
|
|
|
|
def validation_step(self, batch, batch_idx):
|
|
self.validation_step_called = True
|
|
if batch_idx == 0:
|
|
out = ["1", 2, torch.tensor(2)]
|
|
self.out_a = out
|
|
if batch_idx > 0:
|
|
out = {"something": "random"}
|
|
self.out_b = out
|
|
return out
|
|
|
|
def backward(self, loss):
|
|
return LightningModule.backward(self, loss)
|
|
|
|
model = TestModel()
|
|
trainer = Trainer(
|
|
default_root_dir=tmp_path,
|
|
limit_train_batches=2,
|
|
limit_val_batches=2,
|
|
max_epochs=2,
|
|
log_every_n_steps=1,
|
|
enable_model_summary=False,
|
|
)
|
|
|
|
trainer.fit(model)
|
|
|
|
# make sure correct steps were called
|
|
assert model.validation_step_called
|