lightning/tests/tests_pytorch/loops/test_evaluation_loop_flow.py

111 lines
3.6 KiB
Python

# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests the evaluation loop."""
import torch
from lightning.pytorch import Trainer
from lightning.pytorch.core.module import LightningModule
from lightning.pytorch.trainer.states import RunningStage
from torch import Tensor
from tests_pytorch.helpers.deterministic_model import DeterministicModel
def test__eval_step__flow(tmp_path):
"""Tests that only training_step can be used."""
class TestModel(DeterministicModel):
def training_step(self, batch, batch_idx):
acc = self.step(batch, batch_idx)
acc = acc + batch_idx
self.training_step_called = True
return acc
def validation_step(self, batch, batch_idx):
self.validation_step_called = True
if batch_idx == 0:
out = ["1", 2, torch.tensor(2)]
if batch_idx > 0:
out = {"something": "random"}
return out
def backward(self, loss):
return LightningModule.backward(self, loss)
model = TestModel()
trainer = Trainer(
default_root_dir=tmp_path,
limit_train_batches=2,
limit_val_batches=2,
max_epochs=2,
log_every_n_steps=1,
enable_model_summary=False,
)
trainer.fit(model)
# make sure correct steps were called
assert model.validation_step_called
# simulate training manually
trainer.state.stage = RunningStage.TRAINING
kwargs = {"batch": next(iter(model.train_dataloader())), "batch_idx": 0}
train_step_out = trainer.fit_loop.epoch_loop.automatic_optimization.run(trainer.optimizers[0], 0, kwargs)
assert isinstance(train_step_out["loss"], Tensor)
assert train_step_out["loss"].item() == 171
# make sure the optimizer closure returns the correct things
opt_closure = trainer.fit_loop.epoch_loop.automatic_optimization._make_closure(kwargs, trainer.optimizers[0], 0)
opt_closure_result = opt_closure()
assert opt_closure_result.item() == 171
def test__eval_step__epoch_end__flow(tmp_path):
"""Tests that only training_step can be used."""
class TestModel(DeterministicModel):
def training_step(self, batch, batch_idx):
acc = self.step(batch, batch_idx)
acc = acc + batch_idx
self.training_step_called = True
return acc
def validation_step(self, batch, batch_idx):
self.validation_step_called = True
if batch_idx == 0:
out = ["1", 2, torch.tensor(2)]
self.out_a = out
if batch_idx > 0:
out = {"something": "random"}
self.out_b = out
return out
def backward(self, loss):
return LightningModule.backward(self, loss)
model = TestModel()
trainer = Trainer(
default_root_dir=tmp_path,
limit_train_batches=2,
limit_val_batches=2,
max_epochs=2,
log_every_n_steps=1,
enable_model_summary=False,
)
trainer.fit(model)
# make sure correct steps were called
assert model.validation_step_called