492 lines
18 KiB
Python
492 lines
18 KiB
Python
# Copyright The Lightning AI team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from unittest import mock
|
|
from unittest.mock import Mock, call
|
|
|
|
import pytest
|
|
import torch
|
|
from lightning.fabric.accelerators.cuda import _clear_cuda_memory
|
|
from lightning.pytorch import LightningModule, Trainer
|
|
from lightning.pytorch.demos.boring_classes import BoringModel, RandomDataset
|
|
from lightning.pytorch.utilities import CombinedLoader
|
|
from torch.utils.data.dataloader import DataLoader
|
|
from torch.utils.data.sampler import BatchSampler, RandomSampler
|
|
|
|
from tests_pytorch.helpers.runif import RunIf
|
|
|
|
|
|
@mock.patch("lightning.pytorch.loops.evaluation_loop._EvaluationLoop._on_evaluation_epoch_end")
|
|
def test_on_evaluation_epoch_end(eval_epoch_end_mock, tmp_path):
|
|
"""Tests that `on_evaluation_epoch_end` is called for `on_validation_epoch_end` and `on_test_epoch_end` hooks."""
|
|
model = BoringModel()
|
|
|
|
trainer = Trainer(
|
|
default_root_dir=tmp_path, limit_train_batches=2, limit_val_batches=2, max_epochs=2, enable_model_summary=False
|
|
)
|
|
|
|
trainer.fit(model)
|
|
# sanity + 2 epochs
|
|
assert eval_epoch_end_mock.call_count == 3
|
|
|
|
trainer.test()
|
|
# sanity + 2 epochs + called once for test
|
|
assert eval_epoch_end_mock.call_count == 4
|
|
|
|
|
|
@pytest.mark.parametrize("use_batch_sampler", [False, True])
|
|
def test_evaluation_loop_sampler_set_epoch_called(tmp_path, use_batch_sampler):
|
|
"""Tests that set_epoch is called on the dataloader's sampler (if any) during training and validation."""
|
|
|
|
def _get_dataloader():
|
|
dataset = RandomDataset(32, 64)
|
|
sampler = RandomSampler(dataset)
|
|
sampler.set_epoch = Mock()
|
|
if use_batch_sampler:
|
|
batch_sampler = BatchSampler(sampler, 2, True)
|
|
return DataLoader(dataset, batch_sampler=batch_sampler)
|
|
return DataLoader(dataset, sampler=sampler)
|
|
|
|
model = BoringModel()
|
|
trainer = Trainer(
|
|
default_root_dir=tmp_path,
|
|
limit_train_batches=1,
|
|
limit_val_batches=1,
|
|
max_epochs=2,
|
|
enable_model_summary=False,
|
|
enable_checkpointing=False,
|
|
logger=False,
|
|
)
|
|
|
|
train_dataloader = _get_dataloader()
|
|
val_dataloader = _get_dataloader()
|
|
trainer.fit(model, train_dataloaders=train_dataloader, val_dataloaders=val_dataloader)
|
|
train_sampler = train_dataloader.batch_sampler.sampler if use_batch_sampler else train_dataloader.sampler
|
|
val_sampler = val_dataloader.batch_sampler.sampler if use_batch_sampler else val_dataloader.sampler
|
|
|
|
# One for each epoch
|
|
assert train_sampler.set_epoch.mock_calls == [call(0), call(1)]
|
|
# One for each epoch + sanity check
|
|
assert val_sampler.set_epoch.mock_calls == [call(0), call(0), call(1)]
|
|
|
|
val_dataloader = _get_dataloader()
|
|
trainer.validate(model, val_dataloader)
|
|
val_sampler = val_dataloader.batch_sampler.sampler if use_batch_sampler else val_dataloader.sampler
|
|
|
|
assert val_sampler.set_epoch.mock_calls == [call(2)]
|
|
|
|
|
|
@mock.patch(
|
|
"lightning.pytorch.trainer.connectors.logger_connector.logger_connector._LoggerConnector.log_eval_end_metrics"
|
|
)
|
|
def test_log_epoch_metrics_before_on_evaluation_end(update_eval_epoch_metrics_mock, tmp_path):
|
|
"""Test that the epoch metrics are logged before the `on_evaluation_end` hook is fired."""
|
|
order = []
|
|
update_eval_epoch_metrics_mock.side_effect = lambda _: order.append("log_epoch_metrics")
|
|
|
|
class LessBoringModel(BoringModel):
|
|
def on_validation_end(self):
|
|
order.append("on_validation_end")
|
|
super().on_validation_end()
|
|
|
|
trainer = Trainer(default_root_dir=tmp_path, fast_dev_run=1, enable_model_summary=False, num_sanity_val_steps=0)
|
|
trainer.fit(LessBoringModel())
|
|
|
|
assert order == ["log_epoch_metrics", "on_validation_end"]
|
|
|
|
|
|
@RunIf(min_cuda_gpus=1)
|
|
def test_memory_consumption_validation(tmp_path):
|
|
"""Test that the training batch is no longer in GPU memory when running validation.
|
|
|
|
Cannot run with MPS, since there we can only measure shared memory and not dedicated, which device has how much
|
|
memory allocated.
|
|
|
|
"""
|
|
|
|
def get_memory():
|
|
_clear_cuda_memory()
|
|
return torch.cuda.memory_allocated(0)
|
|
|
|
initial_memory = get_memory()
|
|
|
|
class BoringLargeBatchModel(BoringModel):
|
|
@property
|
|
def num_params(self):
|
|
return sum(p.numel() for p in self.parameters())
|
|
|
|
def train_dataloader(self):
|
|
# batch target memory >= 100x boring_model size
|
|
batch_size = self.num_params * 100 // 32 + 1
|
|
return DataLoader(RandomDataset(32, 5000), batch_size=batch_size)
|
|
|
|
def val_dataloader(self):
|
|
return self.train_dataloader()
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
# there is a batch and the boring model, but not two batches on gpu, assume 32 bit = 4 bytes
|
|
lower = 101 * self.num_params * 4
|
|
upper = 201 * self.num_params * 4
|
|
current = get_memory()
|
|
assert lower < current
|
|
assert current - initial_memory < upper
|
|
return super().training_step(batch, batch_idx)
|
|
|
|
def validation_step(self, batch, batch_idx):
|
|
# there is a batch and the boring model, but not two batches on gpu, assume 32 bit = 4 bytes
|
|
lower = 101 * self.num_params * 4
|
|
upper = 201 * self.num_params * 4
|
|
current = get_memory()
|
|
assert lower < current
|
|
assert current - initial_memory < upper
|
|
return super().validation_step(batch, batch_idx)
|
|
|
|
_clear_cuda_memory()
|
|
trainer = Trainer(
|
|
accelerator="gpu",
|
|
devices=1,
|
|
default_root_dir=tmp_path,
|
|
fast_dev_run=2,
|
|
enable_model_summary=False,
|
|
)
|
|
trainer.fit(BoringLargeBatchModel())
|
|
|
|
|
|
def test_evaluation_loop_dataloader_iter_multiple_dataloaders(tmp_path):
|
|
trainer = Trainer(
|
|
default_root_dir=tmp_path,
|
|
limit_val_batches=1,
|
|
enable_model_summary=False,
|
|
enable_checkpointing=False,
|
|
logger=False,
|
|
devices=1,
|
|
)
|
|
|
|
class MyModel(LightningModule):
|
|
batch_start_ins = []
|
|
step_outs = []
|
|
batch_end_ins = []
|
|
|
|
def on_validation_batch_start(self, batch, batch_idx, dataloader_idx):
|
|
self.batch_start_ins.append((batch, batch_idx, dataloader_idx))
|
|
|
|
def validation_step(self, dataloader_iter):
|
|
self.step_outs.append(next(dataloader_iter))
|
|
|
|
def on_validation_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
|
|
self.batch_end_ins.append((batch, batch_idx, dataloader_idx))
|
|
|
|
model = MyModel()
|
|
trainer.validate(model, {"a": [0, 1], "b": [2, 3]})
|
|
|
|
# in on_*_batch_start, the dataloader_idx and batch_idx are not yet known
|
|
# we only get the updated indices once we fetch from the iterator in the step-method
|
|
assert model.batch_start_ins == [(None, 0, 0), (0, 0, 0)]
|
|
assert model.step_outs == [(0, 0, 0), (2, 0, 1)]
|
|
assert model.batch_end_ins == model.step_outs
|
|
|
|
|
|
def test_invalid_dataloader_idx_raises_step(tmp_path):
|
|
trainer = Trainer(default_root_dir=tmp_path, fast_dev_run=True)
|
|
|
|
class ExtraDataloaderIdx(BoringModel):
|
|
def validation_step(self, batch, batch_idx, dataloader_idx): ...
|
|
|
|
def test_step(self, batch, batch_idx, dataloader_idx): ...
|
|
|
|
model = ExtraDataloaderIdx()
|
|
with pytest.raises(RuntimeError, match="have included `dataloader_idx` in `ExtraDataloaderIdx.validation_step"):
|
|
trainer.validate(model)
|
|
with pytest.raises(RuntimeError, match="have included `dataloader_idx` in `ExtraDataloaderIdx.test_step"):
|
|
trainer.test(model)
|
|
|
|
class GoodDefault(BoringModel):
|
|
def validation_step(self, batch, batch_idx, dataloader_idx=0): ...
|
|
|
|
def test_step(self, batch, batch_idx, dataloader_idx=0): ...
|
|
|
|
model = GoodDefault()
|
|
trainer.validate(model)
|
|
trainer.test(model)
|
|
|
|
class ExtraDlIdxOtherName(BoringModel):
|
|
def validation_step(self, batch, batch_idx, dl_idx): ...
|
|
|
|
def test_step(self, batch, batch_idx, dl_idx): ...
|
|
|
|
model = ExtraDlIdxOtherName()
|
|
# different names are not supported
|
|
with pytest.raises(TypeError, match="missing 1 required positional argument: 'dl_idx"):
|
|
trainer.validate(model)
|
|
with pytest.raises(TypeError, match="missing 1 required positional argument: 'dl_idx"):
|
|
trainer.test(model)
|
|
|
|
class MultipleDataloader(BoringModel):
|
|
def val_dataloader(self):
|
|
return [super().val_dataloader(), super().val_dataloader()]
|
|
|
|
def test_dataloader(self):
|
|
return [super().test_dataloader(), super().test_dataloader()]
|
|
|
|
model = MultipleDataloader()
|
|
with pytest.raises(RuntimeError, match="no `dataloader_idx` argument in `MultipleDataloader.validation_step"):
|
|
trainer.validate(model)
|
|
with pytest.raises(RuntimeError, match="no `dataloader_idx` argument in `MultipleDataloader.test_step"):
|
|
trainer.test(model)
|
|
|
|
class IgnoringModel(MultipleDataloader):
|
|
def validation_step(self, batch, batch_idx, *_): ...
|
|
|
|
def test_step(self, batch, batch_idx, *_): ...
|
|
|
|
model = IgnoringModel()
|
|
trainer.validate(model)
|
|
trainer.test(model)
|
|
|
|
class IgnoringModel2(MultipleDataloader):
|
|
def validation_step(self, batch, batch_idx, **_): ...
|
|
|
|
def test_step(self, batch, batch_idx, **_): ...
|
|
|
|
model = IgnoringModel2()
|
|
with pytest.raises(RuntimeError, match="no `dataloader_idx` argument in `IgnoringModel2.validation_step"):
|
|
trainer.validate(model)
|
|
with pytest.raises(RuntimeError, match="no `dataloader_idx` argument in `IgnoringModel2.test_step"):
|
|
trainer.test(model)
|
|
|
|
|
|
def test_invalid_dataloader_idx_raises_batch_start(tmp_path):
|
|
trainer = Trainer(default_root_dir=tmp_path, fast_dev_run=True)
|
|
|
|
class ExtraDataloaderIdx(BoringModel):
|
|
def on_validation_batch_start(self, batch, batch_idx, dataloader_idx): ...
|
|
|
|
def on_test_batch_start(self, batch, batch_idx, dataloader_idx): ...
|
|
|
|
model = ExtraDataloaderIdx()
|
|
with pytest.raises(
|
|
RuntimeError, match="have included `dataloader_idx` in `ExtraDataloaderIdx.on_validation_batch_start"
|
|
):
|
|
trainer.validate(model)
|
|
with pytest.raises(RuntimeError, match="have included `dataloader_idx` in `ExtraDataloaderIdx.on_test_batch_start"):
|
|
trainer.test(model)
|
|
|
|
class GoodDefault(BoringModel):
|
|
def on_validation_batch_start(self, batch, batch_idx, dataloader_idx=0): ...
|
|
|
|
def on_test_batch_start(self, batch, batch_idx, dataloader_idx=0): ...
|
|
|
|
model = GoodDefault()
|
|
trainer.validate(model)
|
|
trainer.test(model)
|
|
|
|
class ExtraDlIdxOtherName(BoringModel):
|
|
def on_validation_batch_start(self, batch, batch_idx, dl_idx): ...
|
|
|
|
def on_test_batch_start(self, batch, batch_idx, dl_idx): ...
|
|
|
|
model = ExtraDlIdxOtherName()
|
|
# different names are not supported
|
|
with pytest.raises(TypeError, match="missing 1 required positional argument: 'dl_idx"):
|
|
trainer.validate(model)
|
|
with pytest.raises(TypeError, match="missing 1 required positional argument: 'dl_idx"):
|
|
trainer.test(model)
|
|
|
|
class MultipleDataloader(BoringModel):
|
|
def validation_step(self, batch, batch_idx, dataloader_idx=0): ...
|
|
|
|
def test_step(self, batch, batch_idx, dataloader_idx=0): ...
|
|
|
|
def on_validation_batch_start(self, batch, batch_idx): ...
|
|
|
|
def on_test_batch_start(self, batch, batch_idx): ...
|
|
|
|
def val_dataloader(self):
|
|
return [super().val_dataloader(), super().val_dataloader()]
|
|
|
|
def test_dataloader(self):
|
|
return [super().test_dataloader(), super().test_dataloader()]
|
|
|
|
model = MultipleDataloader()
|
|
with pytest.raises(
|
|
RuntimeError, match="no `dataloader_idx` argument in `MultipleDataloader.on_validation_batch_start"
|
|
):
|
|
trainer.validate(model)
|
|
with pytest.raises(RuntimeError, match="no `dataloader_idx` argument in `MultipleDataloader.on_test_batch_start"):
|
|
trainer.test(model)
|
|
|
|
class IgnoringModel(MultipleDataloader):
|
|
def on_validation_batch_start(self, batch, batch_idx, *_): ...
|
|
|
|
def on_test_batch_start(self, batch, batch_idx, *_): ...
|
|
|
|
model = IgnoringModel()
|
|
trainer.validate(model)
|
|
trainer.test(model)
|
|
|
|
class IgnoringModel2(MultipleDataloader):
|
|
def on_validation_batch_start(self, batch, batch_idx, **_): ...
|
|
|
|
def on_test_batch_start(self, batch, batch_idx, **_): ...
|
|
|
|
model = IgnoringModel2()
|
|
with pytest.raises(RuntimeError, match="no `dataloader_idx` argument in `IgnoringModel2.on_validation_batch_start"):
|
|
trainer.validate(model)
|
|
with pytest.raises(RuntimeError, match="no `dataloader_idx` argument in `IgnoringModel2.on_test_batch_start"):
|
|
trainer.test(model)
|
|
|
|
|
|
def test_invalid_dataloader_idx_raises_batch_end(tmp_path):
|
|
trainer = Trainer(default_root_dir=tmp_path, fast_dev_run=True)
|
|
|
|
class ExtraDataloaderIdx(BoringModel):
|
|
def on_validation_batch_end(self, outputs, batch, batch_idx, dataloader_idx): ...
|
|
|
|
def on_test_batch_end(self, outputs, batch, batch_idx, dataloader_idx): ...
|
|
|
|
model = ExtraDataloaderIdx()
|
|
with pytest.raises(
|
|
RuntimeError, match="have included `dataloader_idx` in `ExtraDataloaderIdx.on_validation_batch_end"
|
|
):
|
|
trainer.validate(model)
|
|
with pytest.raises(RuntimeError, match="have included `dataloader_idx` in `ExtraDataloaderIdx.on_test_batch_end"):
|
|
trainer.test(model)
|
|
|
|
class GoodDefault(BoringModel):
|
|
def on_validation_batch_end(self, outputs, batch, batch_idx, dataloader_idx=0): ...
|
|
|
|
def on_test_batch_end(self, outputs, batch, batch_idx, dataloader_idx=0): ...
|
|
|
|
model = GoodDefault()
|
|
trainer.validate(model)
|
|
trainer.test(model)
|
|
|
|
class ExtraDlIdxOtherName(BoringModel):
|
|
def on_validation_batch_end(self, outputs, batch, batch_idx, dl_idx): ...
|
|
|
|
def on_test_batch_end(self, outputs, batch, batch_idx, dl_idx): ...
|
|
|
|
model = ExtraDlIdxOtherName()
|
|
# different names are not supported
|
|
with pytest.raises(TypeError, match="missing 1 required positional argument: 'dl_idx"):
|
|
trainer.validate(model)
|
|
with pytest.raises(TypeError, match="missing 1 required positional argument: 'dl_idx"):
|
|
trainer.test(model)
|
|
|
|
class MultipleDataloader(BoringModel):
|
|
def validation_step(self, batch, batch_idx, dataloader_idx=0): ...
|
|
|
|
def test_step(self, batch, batch_idx, dataloader_idx=0): ...
|
|
|
|
def on_validation_batch_end(self, outputs, batch, batch_idx): ...
|
|
|
|
def on_test_batch_end(self, outputs, batch, batch_idx): ...
|
|
|
|
def val_dataloader(self):
|
|
return [super().val_dataloader(), super().val_dataloader()]
|
|
|
|
def test_dataloader(self):
|
|
return [super().test_dataloader(), super().test_dataloader()]
|
|
|
|
model = MultipleDataloader()
|
|
with pytest.raises(
|
|
RuntimeError, match="no `dataloader_idx` argument in `MultipleDataloader.on_validation_batch_end"
|
|
):
|
|
trainer.validate(model)
|
|
with pytest.raises(RuntimeError, match="no `dataloader_idx` argument in `MultipleDataloader.on_test_batch_end"):
|
|
trainer.test(model)
|
|
|
|
class IgnoringModel(MultipleDataloader):
|
|
def on_validation_batch_end(self, outputs, batch, batch_idx, *_): ...
|
|
|
|
def on_test_batch_end(self, outputs, batch, batch_idx, *_): ...
|
|
|
|
model = IgnoringModel()
|
|
trainer.validate(model)
|
|
trainer.test(model)
|
|
|
|
class IgnoringModel2(MultipleDataloader):
|
|
def on_validation_batch_end(self, outputs, batch, batch_idx, **_): ...
|
|
|
|
def on_test_batch_end(self, outputs, batch, batch_idx, **_): ...
|
|
|
|
model = IgnoringModel2()
|
|
with pytest.raises(RuntimeError, match="no `dataloader_idx` argument in `IgnoringModel2.on_validation_batch_end"):
|
|
trainer.validate(model)
|
|
with pytest.raises(RuntimeError, match="no `dataloader_idx` argument in `IgnoringModel2.on_test_batch_end"):
|
|
trainer.test(model)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
("mode", "expected"),
|
|
[
|
|
("max_size_cycle", [{"a": 0, "b": 3}, {"a": 1, "b": 4}, {"a": 2, "b": 3}]),
|
|
("min_size", [{"a": 0, "b": 3}, {"a": 1, "b": 4}]),
|
|
("max_size", [{"a": 0, "b": 3}, {"a": 1, "b": 4}, {"a": 2, "b": None}]),
|
|
],
|
|
)
|
|
@pytest.mark.parametrize("fn", ["validate", "test"])
|
|
def test_evaluation_loop_non_sequential_mode_supprt(tmp_path, mode, expected, fn):
|
|
iterables = {"a": [0, 1, 2], "b": {3, 4}}
|
|
cl = CombinedLoader(iterables, mode)
|
|
seen = []
|
|
|
|
class MyModel(BoringModel):
|
|
def validation_step(self, batch, batch_idx):
|
|
seen.append(batch)
|
|
|
|
def test_step(self, batch, batch_idx):
|
|
seen.append(batch)
|
|
|
|
model = MyModel()
|
|
trainer = Trainer(default_root_dir=tmp_path, barebones=True)
|
|
|
|
trainer_fn = getattr(trainer, fn)
|
|
trainer_fn(model, cl)
|
|
|
|
assert trainer.num_sanity_val_batches == [] # this is fit-only
|
|
actual = trainer.num_val_batches if fn == "validate" else trainer.num_test_batches
|
|
assert actual == [3, 2]
|
|
assert seen == expected
|
|
|
|
|
|
def test_evaluation_loop_when_batch_idx_argument_is_not_given(tmp_path):
|
|
class TestModel(BoringModel):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.validation_step_called = False
|
|
self.test_step_called = False
|
|
|
|
def validation_step(self, batch):
|
|
self.validation_step_called = True
|
|
return {"x": self.step(batch)}
|
|
|
|
def test_step(self, batch):
|
|
self.test_step_called = True
|
|
return {"y": self.step(batch)}
|
|
|
|
trainer = Trainer(
|
|
default_root_dir=tmp_path,
|
|
fast_dev_run=1,
|
|
logger=False,
|
|
enable_checkpointing=False,
|
|
enable_progress_bar=False,
|
|
)
|
|
model = TestModel()
|
|
|
|
trainer.validate(model)
|
|
assert model.validation_step_called
|
|
|
|
trainer.test(model)
|
|
assert model.test_step_called
|