60 lines
2.1 KiB
Python
60 lines
2.1 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License
|
|
|
|
from typing import Union
|
|
|
|
from pytorch_lightning.profiler import (
|
|
AdvancedProfiler,
|
|
BaseProfiler,
|
|
PassThroughProfiler,
|
|
PyTorchProfiler,
|
|
SimpleProfiler,
|
|
)
|
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
|
|
|
PROFILERS = {
|
|
"simple": SimpleProfiler,
|
|
"advanced": AdvancedProfiler,
|
|
"pytorch": PyTorchProfiler,
|
|
}
|
|
|
|
|
|
class ProfilerConnector:
|
|
|
|
def __init__(self, trainer):
|
|
self.trainer = trainer
|
|
|
|
def on_trainer_init(self, profiler: Union[BaseProfiler, str]):
|
|
|
|
if profiler and not isinstance(profiler, (str, BaseProfiler)):
|
|
raise MisconfigurationException(
|
|
"Only None, str and subclasses of `BaseProfiler`"
|
|
" are valid values for `Trainer`'s `profiler` parameter."
|
|
f" Received {profiler} which is of type {type(profiler)}."
|
|
)
|
|
if isinstance(profiler, str):
|
|
if profiler.lower() in PROFILERS:
|
|
profiler_class = PROFILERS[profiler.lower()]
|
|
profiler = profiler_class()
|
|
else:
|
|
raise ValueError(
|
|
"When passing string value for the `profiler` parameter of"
|
|
" `Trainer`, it can only be 'simple' or 'advanced'"
|
|
)
|
|
self.trainer.profiler = profiler or PassThroughProfiler()
|
|
|
|
def on_train_start(self, trainer):
|
|
local_rank = trainer.local_rank if trainer.world_size > 1 else None
|
|
self.trainer.profiler.on_train_start(local_rank)
|