lightning/pytorch_lightning/trainer/callback_hook.py

236 lines
9.4 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from abc import ABC
from copy import deepcopy
from typing import List
from pytorch_lightning.callbacks import Callback
from pytorch_lightning.core.lightning import LightningModule
class TrainerCallbackHookMixin(ABC):
# this is just a summary on variables used in this abstract class,
# the proper values/initialisation should be done in child class
callbacks: List[Callback] = []
lightning_module: LightningModule
def on_before_accelerator_backend_setup(self, model):
"""Called in the beginning of fit and test"""
for callback in self.callbacks:
callback.on_before_accelerator_backend_setup(self, model)
def setup(self, model, stage: str):
"""Called in the beginning of fit and test"""
for callback in self.callbacks:
callback.setup(self, model, stage)
def teardown(self, stage: str):
"""Called at the end of fit and test"""
for callback in self.callbacks:
callback.teardown(self, self.lightning_module, stage)
def on_init_start(self):
"""Called when the trainer initialization begins, model has not yet been set."""
for callback in self.callbacks:
callback.on_init_start(self)
def on_init_end(self):
"""Called when the trainer initialization ends, model has not yet been set."""
for callback in self.callbacks:
callback.on_init_end(self)
def on_fit_start(self):
"""Called when the trainer initialization begins, model has not yet been set."""
for callback in self.callbacks:
callback.on_fit_start(self, self.lightning_module)
def on_fit_end(self):
"""Called when the trainer initialization begins, model has not yet been set."""
for callback in self.callbacks:
callback.on_fit_end(self, self.lightning_module)
def on_sanity_check_start(self):
"""Called when the validation sanity check starts."""
for callback in self.callbacks:
callback.on_sanity_check_start(self, self.lightning_module)
def on_sanity_check_end(self):
"""Called when the validation sanity check ends."""
for callback in self.callbacks:
callback.on_sanity_check_end(self, self.lightning_module)
def on_train_epoch_start(self):
"""Called when the epoch begins."""
for callback in self.callbacks:
callback.on_train_epoch_start(self, self.lightning_module)
def on_train_epoch_end(self, outputs):
"""Called when the epoch ends."""
for callback in self.callbacks:
callback.on_train_epoch_end(self, self.lightning_module, outputs)
def on_validation_epoch_start(self):
"""Called when the epoch begins."""
for callback in self.callbacks:
callback.on_validation_epoch_start(self, self.lightning_module)
def on_validation_epoch_end(self):
"""Called when the epoch ends."""
for callback in self.callbacks:
callback.on_validation_epoch_end(self, self.lightning_module)
def on_test_epoch_start(self):
"""Called when the epoch begins."""
for callback in self.callbacks:
callback.on_test_epoch_start(self, self.lightning_module)
def on_test_epoch_end(self):
"""Called when the epoch ends."""
for callback in self.callbacks:
callback.on_test_epoch_end(self, self.lightning_module)
def on_epoch_start(self):
"""Called when the epoch begins."""
for callback in self.callbacks:
callback.on_epoch_start(self, self.lightning_module)
def on_epoch_end(self):
"""Called when the epoch ends."""
for callback in self.callbacks:
callback.on_epoch_end(self, self.lightning_module)
def on_train_start(self):
"""Called when the train begins."""
for callback in self.callbacks:
callback.on_train_start(self, self.lightning_module)
def on_train_end(self):
"""Called when the train ends."""
for callback in self.callbacks:
callback.on_train_end(self, self.lightning_module)
def on_pretrain_routine_start(self, model):
"""Called when the train begins."""
for callback in self.callbacks:
callback.on_pretrain_routine_start(self, model)
def on_pretrain_routine_end(self, model):
"""Called when the train ends."""
for callback in self.callbacks:
callback.on_pretrain_routine_end(self, model)
def on_batch_start(self):
"""Called when the training batch begins."""
for callback in self.callbacks:
callback.on_batch_start(self, self.lightning_module)
def on_batch_end(self):
"""Called when the training batch ends."""
for callback in self.callbacks:
callback.on_batch_end(self, self.lightning_module)
def on_train_batch_start(self, batch, batch_idx, dataloader_idx):
"""Called when the training batch begins."""
for callback in self.callbacks:
callback.on_train_batch_start(self, self.lightning_module, batch, batch_idx, dataloader_idx)
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
"""Called when the training batch ends."""
for callback in self.callbacks:
callback.on_train_batch_end(self, self.lightning_module, outputs, batch, batch_idx, dataloader_idx)
def on_validation_batch_start(self, batch, batch_idx, dataloader_idx):
"""Called when the validation batch begins."""
for callback in self.callbacks:
callback.on_validation_batch_start(self, self.lightning_module, batch, batch_idx, dataloader_idx)
def on_validation_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
"""Called when the validation batch ends."""
for callback in self.callbacks:
callback.on_validation_batch_end(self, self.lightning_module, outputs, batch, batch_idx, dataloader_idx)
def on_test_batch_start(self, batch, batch_idx, dataloader_idx):
"""Called when the test batch begins."""
for callback in self.callbacks:
callback.on_test_batch_start(self, self.lightning_module, batch, batch_idx, dataloader_idx)
def on_test_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
"""Called when the test batch ends."""
for callback in self.callbacks:
callback.on_test_batch_end(self, self.lightning_module, outputs, batch, batch_idx, dataloader_idx)
def on_validation_start(self):
"""Called when the validation loop begins."""
for callback in self.callbacks:
callback.on_validation_start(self, self.lightning_module)
def on_validation_end(self):
"""Called when the validation loop ends."""
for callback in self.callbacks:
callback.on_validation_end(self, self.lightning_module)
def on_test_start(self):
"""Called when the test begins."""
for callback in self.callbacks:
callback.on_test_start(self, self.lightning_module)
def on_test_end(self):
"""Called when the test ends."""
for callback in self.callbacks:
callback.on_test_end(self, self.lightning_module)
def on_keyboard_interrupt(self):
"""Called when the training is interrupted by KeyboardInterrupt."""
for callback in self.callbacks:
callback.on_keyboard_interrupt(self, self.lightning_module)
def on_save_checkpoint(self):
"""Called when saving a model checkpoint."""
callback_states = {}
for callback in self.callbacks:
callback_class = type(callback)
state = callback.on_save_checkpoint(self, self.lightning_module)
if state:
callback_states[callback_class] = state
return callback_states
def on_load_checkpoint(self, checkpoint):
"""Called when loading a model checkpoint."""
callback_states = checkpoint.get('callbacks')
# Todo: the `callback_states` are dropped with TPUSpawn as they
# can't be saved using `xm.save`
# https://github.com/pytorch/xla/issues/2773
if callback_states is not None:
for callback in self.callbacks:
state = callback_states.get(type(callback))
if state:
state = deepcopy(state)
callback.on_load_checkpoint(state)
def on_after_backward(self):
"""
Called after loss.backward() and before optimizers do anything.
"""
for callback in self.callbacks:
callback.on_after_backward(self, self.lightning_module)
def on_before_zero_grad(self, optimizer):
"""
Called after optimizer.step() and before optimizer.zero_grad().
"""
for callback in self.callbacks:
callback.on_before_zero_grad(self, self.lightning_module, optimizer)