lightning/docs/source/tpu.rst

187 lines
5.1 KiB
ReStructuredText

.. _tpu:
TPU support
===========
Lightning supports running on TPUs. At this moment, TPUs are available
on Google Cloud (GCP), Google Colab and Kaggle Environments. For more information on TPUs
`watch this video <https://www.youtube.com/watch?v=kPMpmcl_Pyw>`_.
----------------
Live demo
----------
Check out this `Google Colab <https://colab.research.google.com/drive/1-_LKx4HwAxl5M6xPJmqAAu444LTDQoa3>`_ to see how to train MNIST on TPUs.
----------------
TPU Terminology
---------------
A TPU is a Tensor processing unit. Each TPU has 8 cores where each
core is optimized for 128x128 matrix multiplies. In general, a single
TPU is about as fast as 5 V100 GPUs!
A TPU pod hosts many TPUs on it. Currently, TPU pod v2 has 2048 cores!
You can request a full pod from Google cloud or a "slice" which gives you
some subset of those 2048 cores.
----------------
How to access TPUs
------------------
To access TPUs, there are three main ways.
1. Using Google Colab.
2. Using Google Cloud (GCP).
3. Using Kaggle.
----------------
Colab TPUs
-----------
Colab is like a jupyter notebook with a free GPU or TPU
hosted on GCP.
To get a TPU on colab, follow these steps:
1. Go to `https://colab.research.google.com/ <https://colab.research.google.com/>`_.
2. Click "new notebook" (bottom right of pop-up).
3. Click runtime > change runtime settings. Select Python 3, and hardware accelerator "TPU".
This will give you a TPU with 8 cores.
4. Next, insert this code into the first cell and execute.
This will install the xla library that interfaces between PyTorch and the TPU.
.. code-block::
!curl https://raw.githubusercontent.com/pytorch/xla/master/contrib/scripts/env-setup.py -o pytorch-xla-env-setup.py
!python pytorch-xla-env-setup.py --version nightly --apt-packages libomp5 libopenblas-dev
5. Once the above is done, install PyTorch Lightning (v 0.7.0+).
.. code-block::
!pip install pytorch-lightning
6. Then set up your LightningModule as normal.
----------------
DistributedSamplers
-------------------
Lightning automatically inserts the correct samplers - no need to do this yourself!
Usually, with TPUs (and DDP), you would need to define a DistributedSampler to move the right
chunk of data to the appropriate TPU. As mentioned, this is not needed in Lightning
.. note:: Don't add distributedSamplers. Lightning does this automatically
If for some reason you still need to, this is how to construct the sampler
for TPU use
.. code-block:: python
import torch_xla.core.xla_model as xm
def train_dataloader(self):
dataset = MNIST(
os.getcwd(),
train=True,
download=True,
transform=transforms.ToTensor()
)
# required for TPU support
sampler = None
if use_tpu:
sampler = torch.utils.data.distributed.DistributedSampler(
dataset,
num_replicas=xm.xrt_world_size(),
rank=xm.get_ordinal(),
shuffle=True
)
loader = DataLoader(
dataset,
sampler=sampler,
batch_size=32
)
return loader
Configure the number of TPU cores in the trainer. You can only choose 1 or 8.
To use a full TPU pod skip to the TPU pod section.
.. code-block:: python
import pytorch_lightning as pl
my_model = MyLightningModule()
trainer = pl.Trainer(tpu_cores=8)
trainer.fit(my_model)
That's it! Your model will train on all 8 TPU cores.
----------------
Single TPU core training
------------------------
Lightning supports training on a single TPU core. Just pass the TPU core ID [1-8] in a list.
.. code-block:: python
trainer = pl.Trainer(tpu_cores=[1])
----------------
Distributed Backend with TPU
----------------------------
The ```distributed_backend``` option used for GPUs does not apply to TPUs.
TPUs work in DDP mode by default (distributing over each core)
----------------
TPU Pod
-------
To train on more than 8 cores, your code actually doesn't change!
All you need to do is submit the following command:
.. code-block:: bash
$ python -m torch_xla.distributed.xla_dist
--tpu=$TPU_POD_NAME
--conda-env=torch-xla-nightly
-- python /usr/share/torch-xla-0.5/pytorch/xla/test/test_train_imagenet.py --fake_data
See `this guide <https://cloud.google.com/tpu/docs/tutorials/pytorch-pod>`_
on how to set up the instance groups and VMs needed to run TPU Pods.
----------------
16 bit precision
-----------------
Lightning also supports training in 16-bit precision with TPUs.
By default, TPU training will use 32-bit precision. To enable 16-bit,
set the 16-bit flag.
.. code-block:: python
import pytorch_lightning as pl
my_model = MyLightningModule()
trainer = pl.Trainer(tpu_cores=8, precision=16)
trainer.fit(my_model)
Under the hood the xla library will use the `bfloat16 type <https://en.wikipedia.org/wiki/Bfloat16_floating-point_format>`_.
----------------
About XLA
----------
XLA is the library that interfaces PyTorch with the TPUs.
For more information check out `XLA <https://github.com/pytorch/xla>`_.
Guide for `troubleshooting XLA <https://github.com/pytorch/xla/blob/master/TROUBLESHOOTING.md>`_