lightning/tests/plugins/test_sharded_plugin.py

252 lines
8.6 KiB
Python

import os
from unittest import mock
import pytest
import torch
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import Callback
from pytorch_lightning.plugins import DDPShardedPlugin, DDPSpawnShardedPlugin
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from tests.helpers.boring_model import BoringModel
from tests.helpers.runif import RunIf
@pytest.mark.parametrize("clip_val", [0, 10])
@RunIf(min_gpus=1, skip_windows=True, amp_native=True, fairscale=True)
@mock.patch("fairscale.optim.oss.OSS.clip_grad_norm")
def test_ddp_sharded_precision_16_clip_gradients(mock_oss_clip_grad_norm, clip_val, tmpdir):
"""
Ensure that clip gradients is only called if the value is greater than 0.
"""
model = BoringModel()
trainer = Trainer(accelerator="ddp_sharded", gpus=1, precision=16, fast_dev_run=True, gradient_clip_val=clip_val)
trainer.fit(model)
if clip_val > 0:
mock_oss_clip_grad_norm.assert_called()
else:
mock_oss_clip_grad_norm.assert_not_called()
@RunIf(fairscale=True)
@pytest.mark.parametrize(["accelerator"], [("ddp_sharded",), ("ddp_sharded_spawn",)])
def test_sharded_ddp_choice(tmpdir, accelerator):
"""
Test to ensure that plugin is correctly chosen
"""
class CB(Callback):
def on_fit_start(self, trainer, pl_module):
if accelerator == "ddp_sharded":
assert isinstance(trainer.accelerator.training_type_plugin, DDPShardedPlugin)
elif accelerator == "ddp_sharded_spawn":
assert isinstance(trainer.accelerator.training_type_plugin, DDPSpawnShardedPlugin)
raise SystemExit()
model = BoringModel()
trainer = Trainer(fast_dev_run=True, accelerator=accelerator, callbacks=[CB()])
with pytest.raises(SystemExit):
trainer.fit(model)
@RunIf(amp_apex=True, fairscale=True)
def test_invalid_apex_sharded(tmpdir):
"""
Test to ensure that we raise an error when we try to use apex and sharded
"""
model = BoringModel()
with pytest.raises(MisconfigurationException, match="Sharded Plugin is not supported with Apex AMP"):
trainer = Trainer(fast_dev_run=True, accelerator="ddp_sharded_spawn", precision=16, amp_backend="apex")
trainer.fit(model)
@RunIf(min_gpus=2, amp_native=True, fairscale=True)
@pytest.mark.parametrize(["accelerator"], [("ddp_sharded",), ("ddp_sharded_spawn",)])
def test_ddp_choice_sharded_amp(tmpdir, accelerator):
"""
Test to ensure that plugin native amp plugin is correctly chosen when using sharded
"""
class CB(Callback):
def on_fit_start(self, trainer, pl_module):
if accelerator == "ddp_sharded":
assert isinstance(trainer.accelerator.training_type_plugin, DDPShardedPlugin)
elif accelerator == "ddp_sharded_spawn":
assert isinstance(trainer.accelerator.training_type_plugin, DDPSpawnShardedPlugin)
raise SystemExit()
model = BoringModel()
trainer = Trainer(fast_dev_run=True, gpus=1, precision=16, accelerator=accelerator, callbacks=[CB()])
with pytest.raises(SystemExit):
trainer.fit(model)
@RunIf(skip_windows=True, fairscale=True)
def test_ddp_sharded_plugin_checkpoint_cpu(tmpdir):
"""
Test to ensure that checkpoint is saved correctly
"""
model = BoringModel()
trainer = Trainer(accelerator="ddp_sharded_spawn", num_processes=2, fast_dev_run=True)
trainer.fit(model)
checkpoint_path = os.path.join(tmpdir, "model.pt")
trainer.save_checkpoint(checkpoint_path)
saved_model = BoringModel.load_from_checkpoint(checkpoint_path)
# Assert model parameters are identical after loading
for ddp_param, shard_param in zip(model.parameters(), saved_model.parameters()):
assert torch.equal(ddp_param.to("cpu"), shard_param)
@RunIf(min_gpus=2, skip_windows=True, fairscale=True)
def test_ddp_sharded_plugin_checkpoint_multi_gpu(tmpdir):
"""
Test to ensure that checkpoint is saved correctly when using multiple GPUs
"""
model = BoringModel()
trainer = Trainer(gpus=2, accelerator="ddp_sharded_spawn", fast_dev_run=True)
trainer.fit(model)
checkpoint_path = os.path.join(tmpdir, "model.pt")
trainer.save_checkpoint(checkpoint_path)
saved_model = BoringModel.load_from_checkpoint(checkpoint_path)
# Assert model parameters are identical after loading
for ddp_param, shard_param in zip(model.parameters(), saved_model.parameters()):
assert torch.equal(ddp_param.to("cpu"), shard_param)
@RunIf(min_gpus=2, skip_windows=True, fairscale=True)
def test_ddp_sharded_plugin_finetune(tmpdir):
"""
Test to ensure that we can save and restart training (simulate fine-tuning)
"""
model = BoringModel()
trainer = Trainer(gpus=2, accelerator="ddp_sharded_spawn", fast_dev_run=True)
trainer.fit(model)
checkpoint_path = os.path.join(tmpdir, "model.pt")
trainer.save_checkpoint(checkpoint_path)
saved_model = BoringModel.load_from_checkpoint(checkpoint_path)
trainer = Trainer(fast_dev_run=True)
trainer.fit(saved_model)
@RunIf(skip_windows=True, fairscale=True)
def test_ddp_sharded_plugin_resume_from_checkpoint(tmpdir):
"""
Test to ensure that resuming from checkpoint works
"""
model = BoringModel()
trainer = Trainer(accelerator="ddp_sharded_spawn", num_processes=2, fast_dev_run=True)
trainer.fit(model)
checkpoint_path = os.path.join(tmpdir, "model.pt")
trainer.save_checkpoint(checkpoint_path)
model = BoringModel()
trainer = Trainer(
accelerator="ddp_sharded_spawn", num_processes=2, fast_dev_run=True, resume_from_checkpoint=checkpoint_path
)
trainer.fit(model)
@pytest.mark.skip(reason="Not a critical test, skip till drone CI performance improves.") # todo
@pytest.mark.skip(reason="Currently unsupported restarting training on different number of devices.")
@RunIf(min_gpus=2, skip_windows=True, fairscale=True)
def test_ddp_sharded_plugin_resume_from_checkpoint_downsize_gpus(tmpdir):
"""
Test to ensure that resuming from checkpoint works when downsizing number of GPUS
"""
model = BoringModel()
trainer = Trainer(accelerator="ddp_sharded_spawn", fast_dev_run=True, gpus=2)
trainer.fit(model)
checkpoint_path = os.path.join(tmpdir, "model.pt")
trainer.save_checkpoint(checkpoint_path)
model = BoringModel()
trainer = Trainer(
accelerator="ddp_sharded_spawn", fast_dev_run=True, gpus=1, resume_from_checkpoint=checkpoint_path
)
trainer.fit(model)
@RunIf(min_gpus=1, skip_windows=True, fairscale=True)
def test_ddp_sharded_plugin_resume_from_checkpoint_gpu_to_cpu(tmpdir):
"""
Test to ensure that resuming from checkpoint works when going from GPUs- > CPU
"""
model = BoringModel()
trainer = Trainer(accelerator="ddp_sharded_spawn", gpus=1, fast_dev_run=True)
trainer.fit(model)
checkpoint_path = os.path.join(tmpdir, "model.pt")
trainer.save_checkpoint(checkpoint_path)
model = BoringModel()
trainer = Trainer(
accelerator="ddp_sharded_spawn", num_processes=2, fast_dev_run=True, resume_from_checkpoint=checkpoint_path
)
trainer.fit(model)
@RunIf(skip_windows=True, special=True, fairscale=True)
@pytest.mark.parametrize("trainer_kwargs", (dict(num_processes=2), pytest.param(dict(gpus=2), marks=RunIf(min_gpus=2))))
def test_ddp_sharded_plugin_test_multigpu(tmpdir, trainer_kwargs):
"""
Test to ensure we can use validate and test without fit
"""
model = BoringModel()
trainer = Trainer(accelerator="ddp_sharded_spawn", fast_dev_run=True, **trainer_kwargs)
trainer.validate(model)
trainer.test(model)
class ManualBoringModel(BoringModel):
def __init__(self):
super().__init__()
self.automatic_optimization = False
def training_step(self, batch, batch_idx):
opt = self.optimizers()
opt.zero_grad()
output = self(batch)
loss = self.loss(batch, output)
self.manual_backward(loss)
opt.step()
return {"loss": loss}
@RunIf(skip_windows=True, special=True, fairscale=True, min_gpus=2)
def test_ddp_sharded_plugin_manual_optimization_spawn(tmpdir):
# todo (sean): this test has been split out as running both tests using parametrize causes "Address in use"
model = ManualBoringModel()
trainer = Trainer(default_root_dir=tmpdir, accelerator="ddp_sharded_spawn", fast_dev_run=2, gpus=2)
trainer.fit(model)
@RunIf(skip_windows=True, special=True, fairscale=True, min_gpus=2)
def test_ddp_sharded_plugin_manual_optimization(tmpdir):
model = ManualBoringModel()
trainer = Trainer(default_root_dir=tmpdir, accelerator="ddp_sharded", fast_dev_run=2, gpus=2)
trainer.fit(model)