lightning/tests/plugins/test_amp_plugins.py

177 lines
5.4 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from unittest import mock
import pytest
import torch
from pytorch_lightning import Trainer
from pytorch_lightning.plugins import ApexMixedPrecisionPlugin, NativeMixedPrecisionPlugin
from pytorch_lightning.plugins.precision import MixedPrecisionPlugin
from tests.helpers import BoringModel
from tests.helpers.runif import RunIf
class MyNativeAMP(NativeMixedPrecisionPlugin):
pass
class MyApexPlugin(ApexMixedPrecisionPlugin):
pass
@mock.patch.dict(
os.environ,
{
"CUDA_VISIBLE_DEVICES": "0,1",
"SLURM_NTASKS": "2",
"SLURM_JOB_NAME": "SOME_NAME",
"SLURM_NODEID": "0",
"LOCAL_RANK": "0",
"SLURM_PROCID": "0",
"SLURM_LOCALID": "0",
},
)
@mock.patch("torch.cuda.device_count", return_value=2)
@pytest.mark.parametrize("ddp_backend,gpus", [("ddp", 2), ("ddp2", 2), ("ddp_spawn", 2)])
@pytest.mark.parametrize(
"amp,custom_plugin,plugin_cls",
[
pytest.param("native", False, NativeMixedPrecisionPlugin, marks=RunIf(amp_native=True)),
pytest.param("native", True, MyNativeAMP, marks=RunIf(amp_native=True)),
pytest.param("apex", False, ApexMixedPrecisionPlugin, marks=RunIf(amp_apex=True)),
pytest.param("apex", True, MyApexPlugin, marks=RunIf(amp_apex=True)),
],
)
def test_amp_apex_ddp(
mocked_device_count, ddp_backend: str, gpus: int, amp: str, custom_plugin: bool, plugin_cls: MixedPrecisionPlugin
):
trainer = Trainer(
fast_dev_run=True,
precision=16,
amp_backend=amp,
gpus=gpus,
accelerator=ddp_backend,
plugins=[plugin_cls()] if custom_plugin else None,
)
assert isinstance(trainer.precision_plugin, plugin_cls)
class GradientUnscaleBoringModel(BoringModel):
def on_before_optimizer_step(self, *_):
norm = torch.nn.utils.clip_grad_norm_(self.parameters(), 2)
if not (torch.isinf(norm) or torch.isnan(norm)):
assert norm.item() < 15.0
@RunIf(min_gpus=2, amp_native=True)
@pytest.mark.parametrize("accum", [1, 2])
def test_amp_gradient_unscale(tmpdir, accum: int):
model = GradientUnscaleBoringModel()
trainer = Trainer(
max_epochs=2,
default_root_dir=tmpdir,
limit_train_batches=2,
limit_test_batches=2,
limit_val_batches=2,
amp_backend="native",
accelerator="ddp_spawn",
gpus=2,
precision=16,
track_grad_norm=2,
log_every_n_steps=1,
accumulate_grad_batches=accum,
)
trainer.fit(model)
@RunIf(min_gpus=1, amp_native=True)
def test_amp_skip_optimizer(tmpdir):
"""
Test that optimizers can be skipped when using amp
"""
class CustomBoringModel(BoringModel):
def __init__(self):
super().__init__()
self.layer1 = torch.nn.Linear(32, 32)
self.layer2 = torch.nn.Linear(32, 2)
def forward(self, x: torch.Tensor):
x = self.layer1(x)
x = self.layer2(x)
return x
def training_step(self, batch, batch_idx, optimizer_idx):
if optimizer_idx == 1:
return None
output = self(batch)
return self.loss(batch, output)
def configure_optimizers(self):
return [
torch.optim.SGD(self.layer1.parameters(), lr=0.1),
torch.optim.SGD(self.layer2.parameters(), lr=0.1),
]
trainer = Trainer(default_root_dir=tmpdir, gpus=1, fast_dev_run=1, amp_backend="native", precision=16)
model = CustomBoringModel()
trainer.fit(model)
@RunIf(min_gpus=2, amp_apex=True, special=True)
@pytest.mark.parametrize("amp_level", ["O2"])
def test_amp_apex_ddp_fit(amp_level, tmpdir):
class CustomBoringModel(BoringModel):
def training_step(self, batch, batch_idx):
assert self.layer.weight.dtype == torch.float16
assert self.trainer.precision_plugin._connected
return super().training_step(batch, batch_idx)
trainer = Trainer(
default_root_dir=tmpdir,
fast_dev_run=True,
precision=16,
amp_backend="apex",
gpus=2,
accelerator="ddp",
plugins=ApexMixedPrecisionPlugin(amp_level=amp_level),
)
assert isinstance(trainer.precision_plugin, ApexMixedPrecisionPlugin)
model = CustomBoringModel()
trainer.fit(model)
trainer.test(model)
@RunIf(min_gpus=2, amp_apex=True)
@pytest.mark.parametrize("amp_level", ["O2"])
def test_amp_apex_ddp_spawn_fit(amp_level, tmpdir):
trainer = Trainer(
default_root_dir=tmpdir,
fast_dev_run=True,
precision=16,
amp_backend="apex",
gpus=2,
accelerator="ddp_spawn",
plugins=ApexMixedPrecisionPlugin(amp_level=amp_level),
)
assert isinstance(trainer.precision_plugin, ApexMixedPrecisionPlugin)
model = BoringModel()
trainer.fit(model)