177 lines
5.4 KiB
Python
177 lines
5.4 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import os
|
|
from unittest import mock
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
from pytorch_lightning import Trainer
|
|
from pytorch_lightning.plugins import ApexMixedPrecisionPlugin, NativeMixedPrecisionPlugin
|
|
from pytorch_lightning.plugins.precision import MixedPrecisionPlugin
|
|
from tests.helpers import BoringModel
|
|
from tests.helpers.runif import RunIf
|
|
|
|
|
|
class MyNativeAMP(NativeMixedPrecisionPlugin):
|
|
pass
|
|
|
|
|
|
class MyApexPlugin(ApexMixedPrecisionPlugin):
|
|
pass
|
|
|
|
|
|
@mock.patch.dict(
|
|
os.environ,
|
|
{
|
|
"CUDA_VISIBLE_DEVICES": "0,1",
|
|
"SLURM_NTASKS": "2",
|
|
"SLURM_JOB_NAME": "SOME_NAME",
|
|
"SLURM_NODEID": "0",
|
|
"LOCAL_RANK": "0",
|
|
"SLURM_PROCID": "0",
|
|
"SLURM_LOCALID": "0",
|
|
},
|
|
)
|
|
@mock.patch("torch.cuda.device_count", return_value=2)
|
|
@pytest.mark.parametrize("ddp_backend,gpus", [("ddp", 2), ("ddp2", 2), ("ddp_spawn", 2)])
|
|
@pytest.mark.parametrize(
|
|
"amp,custom_plugin,plugin_cls",
|
|
[
|
|
pytest.param("native", False, NativeMixedPrecisionPlugin, marks=RunIf(amp_native=True)),
|
|
pytest.param("native", True, MyNativeAMP, marks=RunIf(amp_native=True)),
|
|
pytest.param("apex", False, ApexMixedPrecisionPlugin, marks=RunIf(amp_apex=True)),
|
|
pytest.param("apex", True, MyApexPlugin, marks=RunIf(amp_apex=True)),
|
|
],
|
|
)
|
|
def test_amp_apex_ddp(
|
|
mocked_device_count, ddp_backend: str, gpus: int, amp: str, custom_plugin: bool, plugin_cls: MixedPrecisionPlugin
|
|
):
|
|
|
|
trainer = Trainer(
|
|
fast_dev_run=True,
|
|
precision=16,
|
|
amp_backend=amp,
|
|
gpus=gpus,
|
|
accelerator=ddp_backend,
|
|
plugins=[plugin_cls()] if custom_plugin else None,
|
|
)
|
|
assert isinstance(trainer.precision_plugin, plugin_cls)
|
|
|
|
|
|
class GradientUnscaleBoringModel(BoringModel):
|
|
def on_before_optimizer_step(self, *_):
|
|
norm = torch.nn.utils.clip_grad_norm_(self.parameters(), 2)
|
|
if not (torch.isinf(norm) or torch.isnan(norm)):
|
|
assert norm.item() < 15.0
|
|
|
|
|
|
@RunIf(min_gpus=2, amp_native=True)
|
|
@pytest.mark.parametrize("accum", [1, 2])
|
|
def test_amp_gradient_unscale(tmpdir, accum: int):
|
|
model = GradientUnscaleBoringModel()
|
|
|
|
trainer = Trainer(
|
|
max_epochs=2,
|
|
default_root_dir=tmpdir,
|
|
limit_train_batches=2,
|
|
limit_test_batches=2,
|
|
limit_val_batches=2,
|
|
amp_backend="native",
|
|
accelerator="ddp_spawn",
|
|
gpus=2,
|
|
precision=16,
|
|
track_grad_norm=2,
|
|
log_every_n_steps=1,
|
|
accumulate_grad_batches=accum,
|
|
)
|
|
trainer.fit(model)
|
|
|
|
|
|
@RunIf(min_gpus=1, amp_native=True)
|
|
def test_amp_skip_optimizer(tmpdir):
|
|
"""
|
|
Test that optimizers can be skipped when using amp
|
|
"""
|
|
|
|
class CustomBoringModel(BoringModel):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.layer1 = torch.nn.Linear(32, 32)
|
|
self.layer2 = torch.nn.Linear(32, 2)
|
|
|
|
def forward(self, x: torch.Tensor):
|
|
x = self.layer1(x)
|
|
x = self.layer2(x)
|
|
return x
|
|
|
|
def training_step(self, batch, batch_idx, optimizer_idx):
|
|
if optimizer_idx == 1:
|
|
return None
|
|
output = self(batch)
|
|
return self.loss(batch, output)
|
|
|
|
def configure_optimizers(self):
|
|
return [
|
|
torch.optim.SGD(self.layer1.parameters(), lr=0.1),
|
|
torch.optim.SGD(self.layer2.parameters(), lr=0.1),
|
|
]
|
|
|
|
trainer = Trainer(default_root_dir=tmpdir, gpus=1, fast_dev_run=1, amp_backend="native", precision=16)
|
|
model = CustomBoringModel()
|
|
trainer.fit(model)
|
|
|
|
|
|
@RunIf(min_gpus=2, amp_apex=True, special=True)
|
|
@pytest.mark.parametrize("amp_level", ["O2"])
|
|
def test_amp_apex_ddp_fit(amp_level, tmpdir):
|
|
class CustomBoringModel(BoringModel):
|
|
def training_step(self, batch, batch_idx):
|
|
assert self.layer.weight.dtype == torch.float16
|
|
assert self.trainer.precision_plugin._connected
|
|
return super().training_step(batch, batch_idx)
|
|
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
fast_dev_run=True,
|
|
precision=16,
|
|
amp_backend="apex",
|
|
gpus=2,
|
|
accelerator="ddp",
|
|
plugins=ApexMixedPrecisionPlugin(amp_level=amp_level),
|
|
)
|
|
assert isinstance(trainer.precision_plugin, ApexMixedPrecisionPlugin)
|
|
model = CustomBoringModel()
|
|
trainer.fit(model)
|
|
trainer.test(model)
|
|
|
|
|
|
@RunIf(min_gpus=2, amp_apex=True)
|
|
@pytest.mark.parametrize("amp_level", ["O2"])
|
|
def test_amp_apex_ddp_spawn_fit(amp_level, tmpdir):
|
|
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
fast_dev_run=True,
|
|
precision=16,
|
|
amp_backend="apex",
|
|
gpus=2,
|
|
accelerator="ddp_spawn",
|
|
plugins=ApexMixedPrecisionPlugin(amp_level=amp_level),
|
|
)
|
|
assert isinstance(trainer.precision_plugin, ApexMixedPrecisionPlugin)
|
|
model = BoringModel()
|
|
trainer.fit(model)
|