lightning/pytorch_lightning/utilities/imports.py

112 lines
4.2 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""General utilities"""
import importlib
import operator
import os
import platform
import sys
from importlib.util import find_spec
import torch
from packaging.version import Version
from pkg_resources import DistributionNotFound
def _module_available(module_path: str) -> bool:
"""
Check if a path is available in your environment
>>> _module_available('os')
True
>>> _module_available('bla.bla')
False
"""
try:
return find_spec(module_path) is not None
except AttributeError:
# Python 3.6
return False
except ModuleNotFoundError:
# Python 3.7+
return False
def _compare_version(package: str, op, version) -> bool:
"""
Compare package version with some requirements
>>> _compare_version("torch", operator.ge, "0.1")
True
"""
try:
pkg = importlib.import_module(package)
except (ModuleNotFoundError, DistributionNotFound):
return False
try:
pkg_version = Version(pkg.__version__)
except TypeError:
# this is mock by sphinx, so it shall return True ro generate all summaries
return True
return op(pkg_version, Version(version))
_IS_WINDOWS = platform.system() == "Windows"
_IS_INTERACTIVE = hasattr(sys, "ps1") # https://stackoverflow.com/a/64523765
_TORCH_GREATER_EQUAL_1_7 = _compare_version("torch", operator.ge, "1.7.0")
_TORCH_GREATER_EQUAL_1_8 = _compare_version("torch", operator.ge, "1.8.0")
_TORCH_GREATER_EQUAL_1_8_1 = _compare_version("torch", operator.ge, "1.8.1")
_TORCH_GREATER_EQUAL_1_9 = _compare_version("torch", operator.ge, "1.9.0")
_APEX_AVAILABLE = _module_available("apex.amp")
_BOLTS_AVAILABLE = _module_available("pl_bolts")
_DEEPSPEED_AVAILABLE = _module_available("deepspeed")
_FAIRSCALE_AVAILABLE = not _IS_WINDOWS and _module_available("fairscale.nn")
_FAIRSCALE_OSS_FP16_BROADCAST_AVAILABLE = _FAIRSCALE_AVAILABLE and _compare_version("fairscale", operator.ge, "0.3.3")
_FAIRSCALE_FULLY_SHARDED_AVAILABLE = _FAIRSCALE_AVAILABLE and _compare_version("fairscale", operator.ge, "0.3.4")
_GROUP_AVAILABLE = not _IS_WINDOWS and _module_available("torch.distributed.group")
_HOROVOD_AVAILABLE = _module_available("horovod.torch")
_HYDRA_AVAILABLE = _module_available("hydra")
_HYDRA_EXPERIMENTAL_AVAILABLE = _module_available("hydra.experimental")
_JSONARGPARSE_AVAILABLE = _module_available("jsonargparse")
_KINETO_AVAILABLE = _TORCH_GREATER_EQUAL_1_8_1 and torch.profiler.kineto_available()
_NATIVE_AMP_AVAILABLE = _module_available("torch.cuda.amp") and hasattr(torch.cuda.amp, "autocast")
_OMEGACONF_AVAILABLE = _module_available("omegaconf")
_POPTORCH_AVAILABLE = _module_available("poptorch")
_TORCH_QUANTIZE_AVAILABLE = bool([eg for eg in torch.backends.quantized.supported_engines if eg != "none"])
_TORCHTEXT_AVAILABLE = _module_available("torchtext")
_TORCHVISION_AVAILABLE = _module_available("torchvision")
_TORCHMETRICS_LOWER_THAN_0_3 = _compare_version("torchmetrics", operator.lt, "0.3.0")
_TORCHMETRICS_GREATER_EQUAL_0_3 = _compare_version("torchmetrics", operator.ge, "0.3.0")
_XLA_AVAILABLE: bool = _module_available("torch_xla")
from pytorch_lightning.utilities.xla_device import XLADeviceUtils # noqa: E402
_TPU_AVAILABLE = XLADeviceUtils.tpu_device_exists()
if _POPTORCH_AVAILABLE:
import poptorch
_IPU_AVAILABLE = poptorch.ipuHardwareIsAvailable()
else:
_IPU_AVAILABLE = False
def _fault_tolerant_enabled() -> bool:
"""
EXPERIMENTAL
the `reset` function from `_MultiProcessingDataLoaderIter` was introduced in PyTorch 1.7 but we need to mock it.
"""
return _TORCH_GREATER_EQUAL_1_7 and int(os.getenv("PL_FAULT_TOLERANT_TRAINING", 0))