112 lines
4.2 KiB
Python
112 lines
4.2 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""General utilities"""
|
|
import importlib
|
|
import operator
|
|
import os
|
|
import platform
|
|
import sys
|
|
from importlib.util import find_spec
|
|
|
|
import torch
|
|
from packaging.version import Version
|
|
from pkg_resources import DistributionNotFound
|
|
|
|
|
|
def _module_available(module_path: str) -> bool:
|
|
"""
|
|
Check if a path is available in your environment
|
|
|
|
>>> _module_available('os')
|
|
True
|
|
>>> _module_available('bla.bla')
|
|
False
|
|
"""
|
|
try:
|
|
return find_spec(module_path) is not None
|
|
except AttributeError:
|
|
# Python 3.6
|
|
return False
|
|
except ModuleNotFoundError:
|
|
# Python 3.7+
|
|
return False
|
|
|
|
|
|
def _compare_version(package: str, op, version) -> bool:
|
|
"""
|
|
Compare package version with some requirements
|
|
|
|
>>> _compare_version("torch", operator.ge, "0.1")
|
|
True
|
|
"""
|
|
try:
|
|
pkg = importlib.import_module(package)
|
|
except (ModuleNotFoundError, DistributionNotFound):
|
|
return False
|
|
try:
|
|
pkg_version = Version(pkg.__version__)
|
|
except TypeError:
|
|
# this is mock by sphinx, so it shall return True ro generate all summaries
|
|
return True
|
|
return op(pkg_version, Version(version))
|
|
|
|
|
|
_IS_WINDOWS = platform.system() == "Windows"
|
|
_IS_INTERACTIVE = hasattr(sys, "ps1") # https://stackoverflow.com/a/64523765
|
|
_TORCH_GREATER_EQUAL_1_7 = _compare_version("torch", operator.ge, "1.7.0")
|
|
_TORCH_GREATER_EQUAL_1_8 = _compare_version("torch", operator.ge, "1.8.0")
|
|
_TORCH_GREATER_EQUAL_1_8_1 = _compare_version("torch", operator.ge, "1.8.1")
|
|
_TORCH_GREATER_EQUAL_1_9 = _compare_version("torch", operator.ge, "1.9.0")
|
|
|
|
_APEX_AVAILABLE = _module_available("apex.amp")
|
|
_BOLTS_AVAILABLE = _module_available("pl_bolts")
|
|
_DEEPSPEED_AVAILABLE = _module_available("deepspeed")
|
|
_FAIRSCALE_AVAILABLE = not _IS_WINDOWS and _module_available("fairscale.nn")
|
|
_FAIRSCALE_OSS_FP16_BROADCAST_AVAILABLE = _FAIRSCALE_AVAILABLE and _compare_version("fairscale", operator.ge, "0.3.3")
|
|
_FAIRSCALE_FULLY_SHARDED_AVAILABLE = _FAIRSCALE_AVAILABLE and _compare_version("fairscale", operator.ge, "0.3.4")
|
|
_GROUP_AVAILABLE = not _IS_WINDOWS and _module_available("torch.distributed.group")
|
|
_HOROVOD_AVAILABLE = _module_available("horovod.torch")
|
|
_HYDRA_AVAILABLE = _module_available("hydra")
|
|
_HYDRA_EXPERIMENTAL_AVAILABLE = _module_available("hydra.experimental")
|
|
_JSONARGPARSE_AVAILABLE = _module_available("jsonargparse")
|
|
_KINETO_AVAILABLE = _TORCH_GREATER_EQUAL_1_8_1 and torch.profiler.kineto_available()
|
|
_NATIVE_AMP_AVAILABLE = _module_available("torch.cuda.amp") and hasattr(torch.cuda.amp, "autocast")
|
|
_OMEGACONF_AVAILABLE = _module_available("omegaconf")
|
|
_POPTORCH_AVAILABLE = _module_available("poptorch")
|
|
_TORCH_QUANTIZE_AVAILABLE = bool([eg for eg in torch.backends.quantized.supported_engines if eg != "none"])
|
|
_TORCHTEXT_AVAILABLE = _module_available("torchtext")
|
|
_TORCHVISION_AVAILABLE = _module_available("torchvision")
|
|
_TORCHMETRICS_LOWER_THAN_0_3 = _compare_version("torchmetrics", operator.lt, "0.3.0")
|
|
_TORCHMETRICS_GREATER_EQUAL_0_3 = _compare_version("torchmetrics", operator.ge, "0.3.0")
|
|
_XLA_AVAILABLE: bool = _module_available("torch_xla")
|
|
|
|
from pytorch_lightning.utilities.xla_device import XLADeviceUtils # noqa: E402
|
|
|
|
_TPU_AVAILABLE = XLADeviceUtils.tpu_device_exists()
|
|
|
|
if _POPTORCH_AVAILABLE:
|
|
import poptorch
|
|
|
|
_IPU_AVAILABLE = poptorch.ipuHardwareIsAvailable()
|
|
else:
|
|
_IPU_AVAILABLE = False
|
|
|
|
|
|
def _fault_tolerant_enabled() -> bool:
|
|
"""
|
|
EXPERIMENTAL
|
|
the `reset` function from `_MultiProcessingDataLoaderIter` was introduced in PyTorch 1.7 but we need to mock it.
|
|
"""
|
|
return _TORCH_GREATER_EQUAL_1_7 and int(os.getenv("PL_FAULT_TOLERANT_TRAINING", 0))
|