lightning/pytorch_lightning/utilities/data.py

87 lines
2.8 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Iterable, Mapping, Union
import torch
from torch.utils.data import DataLoader, IterableDataset
from pytorch_lightning.utilities import rank_zero_warn
BType = Union[torch.Tensor, str, Mapping[Any, "BType"], Iterable["BType"]]
def extract_batch_size(batch: BType) -> int:
"""
Recursively unpack a batch to find a torch.Tensor.
Returns:
``len(tensor)`` when found, or ``1`` when it hits an empty or non iterable.
"""
if isinstance(batch, torch.Tensor):
return batch.size(0)
if isinstance(batch, str):
return len(batch)
if isinstance(batch, dict):
sample = next(iter(batch.values()), 1)
return extract_batch_size(sample)
if isinstance(batch, Iterable):
sample = next(iter(batch), 1)
return extract_batch_size(sample)
return 1
def has_iterable_dataset(dataloader: DataLoader) -> bool:
return hasattr(dataloader, "dataset") and isinstance(dataloader.dataset, IterableDataset)
def has_len(dataloader: DataLoader) -> bool:
"""
Checks if a given Dataloader has ``__len__`` method implemented i.e. if
it is a finite dataloader or infinite dataloader.
Raises:
ValueError:
If the length of Dataloader is 0, as it requires at least one batch
"""
try:
# try getting the length
if len(dataloader) == 0:
raise ValueError("`Dataloader` returned 0 length. Please make sure that it returns at least 1 batch")
has_len = True
except TypeError:
has_len = False
except NotImplementedError: # e.g. raised by torchtext if a batch_size_fn is used
has_len = False
if has_len and has_iterable_dataset(dataloader):
rank_zero_warn(
"Your `IterableDataset` has `__len__` defined."
" In combination with multi-process data loading (when num_workers > 1),"
" `__len__` could be inaccurate if each worker is not configured independently"
" to avoid having duplicate data."
)
return has_len
def get_len(dataloader: DataLoader) -> Union[int, float]:
"""Return the length of the given DataLoader. If ``__len__`` method is not implemented, return float('inf')."""
if has_len(dataloader):
return len(dataloader)
return float("inf")