139 lines
5.1 KiB
Python
139 lines
5.1 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from typing import Any, Callable, List, Optional, Tuple, Union
|
|
|
|
import torch
|
|
from torch import Tensor
|
|
from torch.nn import Module
|
|
from torch.optim import Optimizer
|
|
|
|
import pytorch_lightning as pl
|
|
from pytorch_lightning.core.hooks import CheckpointHooks
|
|
from pytorch_lightning.plugins.base_plugin import Plugin
|
|
from pytorch_lightning.utilities import GradClipAlgorithmType
|
|
from pytorch_lightning.utilities.types import _PARAMETERS
|
|
|
|
|
|
class PrecisionPlugin(Plugin, CheckpointHooks):
|
|
"""
|
|
Base class for all plugins handling the precision-specific parts of the training.
|
|
The class attribute precision must be overwritten in child classes.
|
|
The default value reflects fp32 training.
|
|
"""
|
|
|
|
precision: Union[str, int] = 32
|
|
|
|
def master_params(self, optimizer: Optimizer) -> _PARAMETERS:
|
|
"""
|
|
The master params of the model. Returns the plain model params here.
|
|
Maybe different in other precision plugins.
|
|
"""
|
|
for group in optimizer.param_groups:
|
|
yield from group["params"]
|
|
|
|
def connect(
|
|
self, model: Module, optimizers: List[Optimizer], lr_schedulers: List[Any]
|
|
) -> Tuple[Module, List[Optimizer], List[Any]]:
|
|
"""Connects this plugin to the accelerator and the training process"""
|
|
return model, optimizers, lr_schedulers
|
|
|
|
def pre_backward(self, model: "pl.LightningModule", closure_loss: Tensor) -> Tensor:
|
|
"""Run before precision plugin executes backward
|
|
|
|
Args:
|
|
model: the model to be optimized
|
|
closure_loss: the loss value obtained from the closure
|
|
"""
|
|
model.trainer.call_hook("on_before_backward", closure_loss)
|
|
return closure_loss
|
|
|
|
def backward(
|
|
self,
|
|
model: "pl.LightningModule",
|
|
closure_loss: Tensor,
|
|
optimizer: Optional[Optimizer],
|
|
*args: Any,
|
|
**kwargs: Any,
|
|
) -> None:
|
|
"""Performs the actual backpropagation
|
|
|
|
Args:
|
|
model: the model to be optimized
|
|
closure_loss: the loss value obtained from the closure
|
|
optimizer: current optimizer being used. ``None`` if using manual optimization
|
|
"""
|
|
# do backward pass
|
|
if model is not None and isinstance(model, pl.LightningModule):
|
|
model.backward(closure_loss, optimizer, *args, **kwargs)
|
|
else:
|
|
closure_loss.backward(*args, **kwargs)
|
|
|
|
def post_backward(self, model: "pl.LightningModule", closure_loss: Tensor) -> Tensor:
|
|
"""Run after precision plugin executes backward
|
|
|
|
Args:
|
|
model: the model to be optimized
|
|
closure_loss: the loss value obtained from the closure
|
|
"""
|
|
# once backward has been applied, release graph
|
|
closure_loss = closure_loss.detach()
|
|
model.trainer.call_hook("on_after_backward")
|
|
return closure_loss
|
|
|
|
def pre_optimizer_step(
|
|
self,
|
|
model: "pl.LightningModule",
|
|
optimizer: Optimizer,
|
|
optimizer_idx: int,
|
|
lambda_closure: Callable,
|
|
**kwargs: Any,
|
|
) -> bool:
|
|
"""Hook to do something before each optimizer step."""
|
|
model.trainer.call_hook("on_before_optimizer_step", optimizer, optimizer_idx)
|
|
return True
|
|
|
|
def post_optimizer_step(self, optimizer: Optimizer, optimizer_idx: int) -> None:
|
|
"""Hook to do something after each optimizer step."""
|
|
|
|
def clip_gradients(
|
|
self,
|
|
optimizer: Optimizer,
|
|
clip_val: Union[int, float],
|
|
gradient_clip_algorithm: GradClipAlgorithmType = GradClipAlgorithmType.NORM,
|
|
model: Optional[Module] = None,
|
|
) -> None:
|
|
"""Clips the gradients"""
|
|
if clip_val is None:
|
|
return
|
|
|
|
clip_val = float(clip_val)
|
|
if clip_val <= 0:
|
|
return
|
|
|
|
if gradient_clip_algorithm == GradClipAlgorithmType.VALUE:
|
|
self.clip_grad_by_value(optimizer, clip_val)
|
|
elif gradient_clip_algorithm == GradClipAlgorithmType.NORM:
|
|
# TODO: there should be a mechanism to set `norm_type`
|
|
self.clip_grad_by_norm(optimizer, clip_val)
|
|
|
|
def clip_grad_by_value(self, optimizer: Optimizer, clip_val: Union[int, float]) -> None:
|
|
"""Clip gradients by value"""
|
|
parameters = self.master_params(optimizer)
|
|
torch.nn.utils.clip_grad_value_(parameters, clip_value=clip_val)
|
|
|
|
def clip_grad_by_norm(self, optimizer: Optimizer, clip_val: Union[int, float]) -> None:
|
|
"""Clip gradients by norm"""
|
|
parameters = self.master_params(optimizer)
|
|
torch.nn.utils.clip_grad_norm_(parameters, clip_val)
|