232 lines
9.1 KiB
Python
232 lines
9.1 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from collections import OrderedDict
|
|
from typing import Any, Dict, Iterator, List, Optional, Union
|
|
|
|
from deprecate import void
|
|
from torch import Tensor
|
|
|
|
from pytorch_lightning.loops.base import Loop
|
|
from pytorch_lightning.trainer.progress import Progress
|
|
from pytorch_lightning.utilities.memory import recursive_detach
|
|
from pytorch_lightning.utilities.types import STEP_OUTPUT
|
|
|
|
|
|
class EvaluationEpochLoop(Loop):
|
|
"""
|
|
This is the loop performing the evaluation. It mainly loops over the given dataloader and runs the validation
|
|
or test step (depending on the trainer's current state).
|
|
"""
|
|
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.dataloader: Optional[Iterator] = None
|
|
self._dl_max_batches: Optional[int] = None
|
|
self._num_dataloaders: Optional[int] = None
|
|
self.outputs: List[STEP_OUTPUT] = []
|
|
self.batch_progress = Progress()
|
|
|
|
@property
|
|
def done(self) -> bool:
|
|
"""Returns ``True`` if the current iteration count reaches the number of dataloader batches."""
|
|
return self.batch_progress.current.completed >= self._dl_max_batches
|
|
|
|
def connect(self, **kwargs: "Loop") -> None:
|
|
raise NotImplementedError(f"{self.__class__.__name__} does not connect any child loops.")
|
|
|
|
def reset(self) -> None:
|
|
"""Resets the loop's internal state."""
|
|
self._dl_max_batches = None
|
|
self._num_dataloaders = None
|
|
self.outputs = []
|
|
|
|
if not self.restarting:
|
|
self.batch_progress.current.reset()
|
|
|
|
def on_run_start(
|
|
self, dataloader_iter: Iterator, dataloader_idx: int, dl_max_batches: int, num_dataloaders: int
|
|
) -> None:
|
|
"""Adds the passed arguments to the loop's state if necessary
|
|
|
|
Args:
|
|
dataloader_iter: iterator over the dataloader
|
|
dataloader_idx: index of the current dataloader
|
|
dl_max_batches: maximum number of batches the dataloader can produce
|
|
num_dataloaders: the total number of dataloaders
|
|
"""
|
|
void(dataloader_iter, dataloader_idx)
|
|
self._dl_max_batches = dl_max_batches
|
|
self._num_dataloaders = num_dataloaders
|
|
|
|
def advance(
|
|
self, dataloader_iter: Iterator, dataloader_idx: int, dl_max_batches: int, num_dataloaders: int
|
|
) -> None:
|
|
"""Calls the evaluation step with the corresponding hooks and updates the logger connector.
|
|
|
|
Args:
|
|
dataloader_iter: iterator over the dataloader
|
|
dataloader_idx: index of the current dataloader
|
|
dl_max_batches: maximum number of batches the dataloader can produce
|
|
num_dataloaders: the total number of dataloaders
|
|
|
|
Raises:
|
|
StopIteration: If the current batch is None
|
|
"""
|
|
void(dl_max_batches, num_dataloaders)
|
|
|
|
batch_idx, batch = next(dataloader_iter)
|
|
|
|
if batch is None:
|
|
raise StopIteration
|
|
|
|
with self.trainer.profiler.profile("evaluation_batch_to_device"):
|
|
batch = self.trainer.accelerator.batch_to_device(batch, dataloader_idx=dataloader_idx)
|
|
|
|
self.batch_progress.increment_ready()
|
|
|
|
# hook
|
|
self.on_evaluation_batch_start(batch, batch_idx, dataloader_idx)
|
|
|
|
self.batch_progress.increment_started()
|
|
|
|
# lightning module methods
|
|
with self.trainer.profiler.profile("evaluation_step_and_end"):
|
|
output = self.evaluation_step(batch, batch_idx, dataloader_idx)
|
|
output = self.evaluation_step_end(output)
|
|
|
|
self.batch_progress.increment_processed()
|
|
|
|
# track loss history
|
|
self.on_evaluation_batch_end(output, batch, batch_idx, dataloader_idx)
|
|
|
|
self.batch_progress.increment_completed()
|
|
|
|
# log batch metrics
|
|
self.trainer.logger_connector.update_eval_step_metrics()
|
|
|
|
# track epoch level outputs
|
|
self.outputs = self._track_output_for_epoch_end(self.outputs, output)
|
|
|
|
def on_run_end(self) -> List[STEP_OUTPUT]:
|
|
"""Returns the outputs of the whole run"""
|
|
outputs = self.outputs
|
|
# free memory
|
|
self.outputs = []
|
|
return outputs
|
|
|
|
def evaluation_step(self, batch: Any, batch_idx: int, dataloader_idx: int) -> Optional[STEP_OUTPUT]:
|
|
"""The evaluation step (validation_step or test_step depending on the trainer's state).
|
|
|
|
Args:
|
|
batch: The current batch to run through the step.
|
|
batch_idx: The index of the current batch
|
|
dataloader_idx: the index of the dataloader producing the current batch
|
|
|
|
Returns:
|
|
the outputs of the step
|
|
"""
|
|
# configure step_kwargs
|
|
step_kwargs = self._build_kwargs(batch, batch_idx, dataloader_idx)
|
|
|
|
if self.trainer.testing:
|
|
self.trainer.lightning_module._current_fx_name = "test_step"
|
|
with self.trainer.profiler.profile("test_step"):
|
|
output = self.trainer.accelerator.test_step(step_kwargs)
|
|
else:
|
|
self.trainer.lightning_module._current_fx_name = "validation_step"
|
|
with self.trainer.profiler.profile("validation_step"):
|
|
output = self.trainer.accelerator.validation_step(step_kwargs)
|
|
|
|
return output
|
|
|
|
def evaluation_step_end(self, *args: Any, **kwargs: Any) -> Optional[STEP_OUTPUT]:
|
|
"""Calls the `{validation/test}_step_end` hook"""
|
|
hook_name = "test_step_end" if self.trainer.testing else "validation_step_end"
|
|
output = self.trainer.call_hook(hook_name, *args, **kwargs)
|
|
return output
|
|
|
|
def on_evaluation_batch_start(self, batch: Any, batch_idx: int, dataloader_idx: int) -> None:
|
|
"""Calls the ``on_{validation/test}_batch_start`` hook.
|
|
|
|
Args:
|
|
batch: The current batch to run through the step
|
|
batch_idx: The index of the current batch
|
|
dataloader_idx: The index of the dataloader producing the current batch
|
|
|
|
Raises:
|
|
AssertionError: If the number of dataloaders is None (has not yet been set).
|
|
"""
|
|
self.trainer.logger_connector.on_batch_start()
|
|
|
|
assert self._num_dataloaders is not None
|
|
self.trainer.logger_connector.on_evaluation_batch_start(batch, batch_idx, dataloader_idx, self._num_dataloaders)
|
|
|
|
if self.trainer.testing:
|
|
self.trainer.call_hook("on_test_batch_start", batch, batch_idx, dataloader_idx)
|
|
else:
|
|
self.trainer.call_hook("on_validation_batch_start", batch, batch_idx, dataloader_idx)
|
|
|
|
def on_evaluation_batch_end(
|
|
self, output: Optional[STEP_OUTPUT], batch: Any, batch_idx: int, dataloader_idx: int
|
|
) -> None:
|
|
"""The ``on_{validation/test}_batch_end`` hook.
|
|
|
|
Args:
|
|
output: The output of the performed step
|
|
batch: The input batch for the step
|
|
batch_idx: The index of the current batch
|
|
dataloader_idx: Index of the dataloader producing the current batch
|
|
"""
|
|
hook_name = "on_test_batch_end" if self.trainer.testing else "on_validation_batch_end"
|
|
self.trainer.call_hook(hook_name, output, batch, batch_idx, dataloader_idx)
|
|
|
|
self.trainer.logger_connector.on_batch_end()
|
|
|
|
# track debug metrics
|
|
self.trainer.dev_debugger.track_eval_loss_history(batch_idx, dataloader_idx, output)
|
|
|
|
def _build_kwargs(self, batch: Any, batch_idx: int, dataloader_idx: int) -> Dict[str, Union[Any, int]]:
|
|
"""Helper function to build the arguments for the current step
|
|
|
|
Args:
|
|
batch: The current batch to run through the step
|
|
batch_idx: the index of the current batch
|
|
dataloader_idx: the index of the dataloader producing the current batch
|
|
|
|
Returns:
|
|
the keyword arguments to pass to the step function
|
|
"""
|
|
# make dataloader_idx arg in validation_step optional
|
|
step_kwargs = OrderedDict([("batch", batch), ("batch_idx", batch_idx)])
|
|
|
|
multiple_val_loaders = not self.trainer.testing and self._num_dataloaders > 1
|
|
multiple_test_loaders = self.trainer.testing and self._num_dataloaders > 1
|
|
|
|
if multiple_test_loaders or multiple_val_loaders:
|
|
step_kwargs["dataloader_idx"] = dataloader_idx
|
|
|
|
return step_kwargs
|
|
|
|
def _track_output_for_epoch_end(
|
|
self, outputs: List[STEP_OUTPUT], output: Optional[STEP_OUTPUT]
|
|
) -> List[STEP_OUTPUT]:
|
|
if output is not None:
|
|
if isinstance(output, dict):
|
|
output = recursive_detach(output, to_cpu=self.trainer.move_metrics_to_cpu)
|
|
elif isinstance(output, Tensor) and output.is_cuda and self.trainer.move_metrics_to_cpu:
|
|
output = output.cpu()
|
|
outputs.append(output)
|
|
return outputs
|